Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral QuizTime Machine
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Fluorluanshiweiite

A valid IMA mineral species
This page is currently not sponsored. Click here to sponsor this page.
Formula:
KLiAl1.5(Si3.5Al0.5)O10F2
Colour:
Silvery white
Lustre:
Vitreous
Specific Gravity:
2.94
Crystal System:
Monoclinic
Name:
For being the fluorine analogue of luanshiweiite.
The fluorine analogue of luanshiweiite.
Compare lepidolite.


Hide all sections | Show all sections

Unique IdentifiersHide

Mindat ID:
53851
Long-form identifier:
mindat:1:1:53851:8

IMA Classification of FluorluanshiweiiteHide

Classification of FluorluanshiweiiteHide

9.EC.10

9 : SILICATES (Germanates)
E : Phyllosilicates
C : Phyllosilicates with mica sheets, composed of tetrahedral and octahedral nets

Mineral SymbolsHide

As of 2021 there are now IMA–CNMNC approved mineral symbols (abbreviations) for each mineral species, useful for tables and diagrams.

SymbolSourceReference
FlwIMA–CNMNCWarr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. doi:10.1180/mgm.2021.43

Physical Properties of FluorluanshiweiiteHide

Vitreous
Transparency:
Transparent
Comment:
Pearly on cleavage planes
Colour:
Silvery white
Streak:
Colorless, white
Tenacity:
Flexible
Cleavage:
Perfect
{001}
Parting:
None
Fracture:
Micaceous
Density:
2.94(3) g/cm3 (Measured)    2.898 g/cm3 (Calculated)

Optical Data of FluorluanshiweiiteHide

Type:
Biaxial (-)
RI values:
nα = 1.554(1) nβ = 1.581(1) nγ = 1.583(1)
2V:
Measured: 25° to 35°, Calculated: 30.05°
Max. Birefringence:
δ = 0.029
Based on recorded range of RI values above.

Interference Colours:
The colours simulate birefringence patterns seen in thin section under crossed polars. They do not take into account mineral colouration or opacity.

Michel-Levy Bar The default colours simulate the birefringence range for a 30 µm thin-section thickness. Adjust the slider to simulate a different thickness.

Grain Simulation You can rotate the grain simulation to show how this range might look as you rotated a sample under crossed polars.

Surface Relief:
Moderate

Chemistry of FluorluanshiweiiteHide

Mindat Formula:
KLiAl1.5(Si3.5Al0.5)O10F2
Element Weights:
Element% weight
Si60.853 %
O23.111 %
K5.648 %
F5.489 %
Al3.897 %
Li1.003 %

Calculated from ideal end-member formula.

Crystallography of FluorluanshiweiiteHide

Crystal System:
Monoclinic
Class (H-M):
2/m - Prismatic
Space Group:
B2/m
Setting:
C2/m
Cell Parameters:
a = 5.2030(5) Å, b = 8.9894(6) Å, c = 10.1253(9) Å
β = 100.68(1)°
Ratio:
a:b:c = 0.579 : 1 : 1.126
Unit Cell V:
465.38 ų (Calculated from Unit Cell)
Z:
2
Twinning:
None observed.
Comment:
1M polytype

X-Ray Powder DiffractionHide

Geological EnvironmentHide

Paragenetic Mode(s):
Paragenetic ModeEarliest Age (Ga)
Stage 4b: Highly evolved igneous rocks>3.0
34 : Complex granite pegmatites

Type Occurrence of FluorluanshiweiiteHide

General Appearance of Type Material:
Found in cookeite as a flaky residue, replaced by Cs-rich mica, or in the form of scale aggregates. Most individual grains are <1 mm in size, rarely to 1 cm. The periphery is replaced by cookeite.
Place of Conservation of Type Material:
Type material is deposited in the mineralogical collection of the Geological Museum of China, No. 16, Yangrou Hutong, Xisi, Beijing 100031, People’s Republic of China, catalogue number M16085.
Geological Setting of Type Material:
LCT (Li, Cs, Ta) pegmatite.
Associated Minerals at Type Locality:

Synonyms of FluorluanshiweiiteHide

Other Language Names for FluorluanshiweiiteHide

Relationship of Fluorluanshiweiite to other SpeciesHide

Other Members of Lepidolite:
LuanshiweiiteKLiAl1.5(Si3.5Al0.5)O10(OH)2Mon. 2/m : B2/b
PolylithioniteKLi2Al(Si4O10)(F,OH)2Mon. 2/m : B2/b
Polylithionite-Trilithionite Series
TrilithioniteK(Li1.5Al1.5)(AlSi3O10)(F,OH)2Mon. 2/m : B2/b

Related Minerals - Strunz-mindat GroupingHide

9.EC.MeifuiteKFe6(Si7Al)O19(OH)4Cl2Tric. 1 : P1
9.EC.BalestraiteKLi2V5+Si4O12Mon. 2 : B2
9.EC.05TalcMg3Si4O10(OH)2Tric. 1 : P1
9.EC.05MinnesotaiteFe2+3Si4O10(OH)2Tric. 1 : P1
9.EC.05WillemseiteNi3Si4O10(OH)2Mon.
9.EC.9.EC.VoloshiniteRb(LiAl1.50.5)(Al0.5Si3.5)O10F2Mon. 2/m : B2/b
9.EC.10GarmiteCsLiMg2(Si4O10)F2Mon.
9.EC.10GorbunoviteCsLi2(Ti,Fe)Si4O10(F,OH,O)2Mon.
9.EC.10FerripyrophylliteFe3+Si2O5(OH)Mon. 2/m
9.EC.10ManganiceladoniteK(MgMn3+◻)(Si4O10)(OH)2Mon.
9.EC.10LuanshiweiiteKLiAl1.5(Si3.5Al0.5)O10(OH)2Mon. 2/m : B2/b
9.EC.10PyrophylliteAl2Si4O10(OH)2Tric. 1
9.EC.15ParagoniteNaAl2(AlSi3O10)(OH)2Mon.
9.EC.15FerroaluminoceladoniteK(Fe2+Al◻)(Si4O10)(OH)2Mon. 2/m : B2/m
9.EC.15NanpingiteCsAl2(AlSi3O10)(OH,F)2Mon. 2/m : B2/b
9.EC.15FerroceladoniteK(Fe2+Fe3+◻)(Si4O10)(OH)2Mon. 2/m : B2/m
9.EC.15Ganterite(Ba,Na,K)(Al,Mg)2(AlSi3O10)(OH)2Mon. 2/m : B2/b
9.EC.15KreiteriteCsLi2Fe3+(Si4O10)F2Mon.
9.EC.15RoscoeliteKV3+2(AlSi3O10)(OH)2Mon. 2/m : B2/b
9.EC.15AluminoceladoniteK(MgAl◻)(Si4O10)(OH)2Mon. 2/m : B2/m
9.EC.15Tobelite(NH4)Al2(AlSi3O10)(OH)2Mon. 2/m : B2/m
9.EC.15TainioliteKLiMg2(Si4O10)F2Mon. 2/m : B2/m
9.EC.15CeladoniteK(MgFe3+◻)(Si4O10)(OH)2Mon. 2/m : B2/m
9.EC.15ChromceladoniteK(MgCr◻)(Si4O10)(OH)2Mon. 2 : B2
9.EC.15MontdoriteKFe2+1.5Mn2+0.5Mg0.5Si4O10(F,OH)2Mon. 2/m : B2/m
9.EC.15ChromphylliteKCr2(AlSi3O10)(OH)2Mon. 2/m : B2/b
9.EC.15BoromuscoviteKAl2(BSi3O10)(OH)2Mon. 2/m
9.EC.15UM1988-22-SiO:AlCaFFeHKLiMgKLiMgAl2Si3O10F2Mon.
9.EC.15Chernykhite(Ba,Na)(V3+,Al,Mg)2((Si,Al)4O10)(OH)2Mon.
9.EC.15MuscoviteKAl2(AlSi3O10)(OH)2Mon. 2/m : B2/b
9.EC.20MasutomiliteK(LiAlMn2+)[AlSi3O10]F2Mon. 2 : B2
9.EC.20OxyphlogopiteK(Mg,Ti,Fe)3[(Si,Al)4O10](O,F)2Mon. 2/m : B2/m
9.EC.20Chloroferrokinoshitalite(Ba,K)(Fe2+,Mg)3(Al2Si2O10)(Cl,OH,F)2
9.EC.20SiderophylliteKFe2+2Al(Al2Si2O10)(OH)2Mon.
9.EC.20SokolovaiteCsLi2Al(Si4O10)F2Mon.
9.EC.20HendricksiteKZn3(Si3Al)O10(OH)2Mon. 2/m : B2/m
9.EC.20TetraferriphlogopiteKMg3(Fe3+Si3O10)(OH,F)2Mon. 2/m : B2/m
9.EC.20FluoranniteKFe2+3(Si3Al)O10F2Mon. 2/m : B2/m
9.EC.20AspidoliteNaMg3(AlSi3O10)(OH)2Mon. 2/m : B2/m
9.EC.20Suhailite(NH4)Fe2+3(AlSi3O10)(OH)2Mon. 2/m : B2/m
9.EC.20EphesiteNaLiAl2(Al2Si2O10)(OH)2Tric. 1 : P1
9.EC.20NorrishiteKLiMn3+2(Si4O10)O2Mon. 2/m : B2/m
9.EC.20PhlogopiteKMg3(AlSi3O10)(OH)2Mon. 2/m : B2/m
9.EC.20YangzhumingiteKMg2.5(Si4O10)F2Mon. 2/m : B2/m
9.EC.20OrloviteKLi2Ti(Si4O10)OFMon. 2 : B2
9.EC.20TetraferrianniteKFe2+3(Si3Fe3+)O10(OH)2Mon. 2/m : B2/m
9.EC.20ShirokshiniteK(NaMg2)(Si4O10)F2Mon. 2/m : B2/m
9.EC.20TrilithioniteK(Li1.5Al1.5)(AlSi3O10)(F,OH)2Mon. 2/m : B2/b
9.EC.20PolylithioniteKLi2Al(Si4O10)(F,OH)2Mon. 2/m : B2/b
9.EC.20ShirozuliteKMn2+3(Si3Al)O10(OH)2Mon. 2/m : B2/m
9.EC.20PreiswerkiteNaMg2Al(Al2Si2O10)(OH)2Mon. 2/m : B2/b
9.EC.20FluorophlogopiteKMg3(Si3Al)O10F2Mon. 2/m : B2/m
9.EC.20Wonesite(Na,K)(Mg,Fe,Al)6((Al,Si)4O10)2(OH,F)4Mon. 2/m : B2/m
9.EC.20UM2004-49-SiO:AlCsFHKLi(Cs,K)(Al,Li)2.6((Si,Al)4O10)(F,OH)2
9.EC.20FluorotetraferriphlogopiteKMg3(Fe3+Si3O10)F2Mon. 2/m : B2/m
9.EC.20AnniteKFe2+3(AlSi3O10)(OH)2Mon. 2/m : B2/m
9.EC.20EastoniteKMg2Al(Al2Si2O10)(OH)2Mon.
9.EC.22PimeliteNi3Si4O10(OH)2 · 4H2OHex.
9.EC.30MargariteCaAl2(Al2Si2O10)(OH)2Mon. 2/m : B2/b
9.EC.30Chlorophaeite(Ca,Mg,Fe)2Fe2Si4O13 · 10H2O
9.EC.35Kinoshitalite(Ba,K)(Mg,Mn2+,Al)3(Al2Si2O10)(OH)2Mon. 2/m : B2/m
9.EC.35Ferrokinoshitalite(Ba,K)(Fe2+,Mg)3(Al2Si2O10)(OH,F)2Mon. 2/m : B2/m
9.EC.35ClintoniteCaAlMg2(SiAl3O10)(OH)2Mon. 2/m : B2/m
9.EC.35Oxykinoshitalite(Ba,K)(Mg,Ti,Fe3+,Fe2+)3((Si,Al)4O10)(O,OH,F)2Mon. 2/m : B2/m
9.EC.35FluorokinoshitaliteBaMg3(Al2Si2O10)F2Mon. 2/m : B2/m
9.EC.35BityiteCaLiAl2(AlBeSi2O10)(OH)2Mon. 2/m : B2/b
9.EC.35Anandite(Ba,K)(Fe2+,Mg)3((Si,Al,Fe)4O10)(S,OH)2Mon. 2/m : B2/b
9.EC.40Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2OMon. 2/m : B2/m
9.EC.40Beidellite(Na,Ca0.5)0.3Al2((Si,Al)4O10)(OH)2 · nH2OMon. 2/m : B2/m
9.EC.40VolkonskoiteCa0.3(Cr,Mg,Fe)2((Si,Al)4O10)(OH)2 · 4H2OMon.
9.EC.40NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2OMon. 2/m : B2/m
9.EC.40Kurumsakite(Zn,Ni,Cu)8Al8V5+2Si5O35 · 27H2O (?)Orth.
9.EC.40Yakhontovite(Ca,Na)0.5(Cu,Fe,Mg)2(Si4O10)(OH)2 · 3H2OMon.
9.EC.45SwineforditeLi(Al,Li,Mg)3((Si,Al)4O10)2(OH,F)4 · nH2OMon. 2/m : B2/m
9.EC.45HectoriteNa0.3(Mg,Li)3(Si4O10)(F,OH)2Mon. 2/m : B2/m
9.EC.45ZincsiliteZn3Si4O10(OH)2 · 4H2O (?)Mon.
9.EC.45HanjiangiteBa2CaV3+Al(H2AlSi3O12)(CO3)2FMon. 2 : B2
9.EC.45SpadaiteMgSiO2(OH)2 · H2O (?)
9.EC.45FerrosaponiteCa0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2OMon.
9.EC.45Stevensite(Ca,Na)xMg3-x(Si4O10)(OH)2Mon.
9.EC.45SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2OMon.
9.EC.45SauconiteNa0.3Zn3((Si,Al)4O10)(OH)2 · 4H2OMon.
9.EC.50VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2OMon. 2/m
9.EC.52Tarasovitenear NaKAl11Si13O40(OH)9 · 3H2O
9.EC.55ClinochloreMg5Al(AlSi3O10)(OH)8Mon. 2/m : B2/m
9.EC.55Borocookeite(LiAl4◻)[BSi3O10](OH)8Mon. m : Bb
9.EC.55FranklinfurnaceiteCa2Fe3+Mn2+3Mn3+(Zn2Si2O10)(OH)8Mon. 2 : B2
9.EC.55PennantiteMn2+5Al(AlSi3O10)(OH)8Tric.
9.EC.55VakhrushevaiteMg5Cr(AlSi3O10)(OH)8Tric. 1
9.EC.55Nimite(Ni,Mg,Al)6((Si,Al)4O10)(OH)8Mon. 2/m : B2/m
9.EC.55Cookeite(LiAl4◻)[AlSi3O10](OH)8Mon. 2/m
9.EC.55Gonyerite(Mn2+,Mg)5Fe3+(Fe3+Si3O10)(OH)8Orth.
9.EC.55Chamosite(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8Mon. 2/m : B2/m
9.EC.55Orthochamosite(Fe2+,Mg,Fe3+)5Al(AlSi3O10)(OH,O)8
9.EC.55Baileychlore(Zn,Fe2+,Al,Mg)6(Si,Al)4O10(OH)8Tric. 1
9.EC.55SudoiteMg2Al3(Si3Al)O10)(OH)8Mon. 2/m : B2/m
9.EC.55GlagoleviteNa(Mg,Al)6(AlSi3O10)(OH,O)8Tric. 1 : P1
9.EC.55DonbassiteAl4.33(Si3Al)O10(OH)8Mon. 2 : B2
9.EC.60DozyiteMg7Al2(Al2Si4O15)(OH)12Mon.
9.EC.60Rectorite(Na,Ca)Al4((Si,Al)8O20)(OH)4 · 2H2OMon.
9.EC.60Corrensite(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2OOrth.
9.EC.60AliettiteCa0.2Mg6((Si,Al)8O20)(OH)4 · 4H2OMon.
9.EC.60Karpinskite(Ni,Mg)2Si2O5(OH)2 (?)Mon.
9.EC.60LunijianlaiteLi0.7Al6.2(AlSi7O20)(OH,O)10Mon.
9.EC.60TosuditeNa0.5(Al,Mg)6((Si,Al)8O18)(OH)12 · 5H2OMon. 2 : B2
9.EC.60HydrobiotiteK(Mg,Fe2+)6((Si,Al)8O20)(OH)4 · nH2OMon. 2/m : B2/m
9.EC.60Saliotite(Li,Na)Al3(AlSi3O10)(OH)5Mon. 2/m : B2/m
9.EC.60KulkeiteMg8Al(AlSi7O20)(OH)10Mon.
9.EC.60BrinrobertsiteNa0.3Al4(Si4O10)2(OH)4 · 3.5 H2OMon.
9.EC.65Macaulayite(Fe,Al)24Si4O43(OH)2Mon.
9.EC.70BurckhardtitePb2(Fe3+Te6+)[AlSi3O8]O6Trig. 3m (3 2/m) : P3 1m
9.EC.75Niksergievite(Ba,Ca)2Al3(AlSi3O10)(CO3)(OH)6 · nH2OMon.
9.EC.75Ferrisurite(Pb,Ca)2.4Fe3+2(Si4O10)(CO3)1.7(OH)3 · nH2OMon.
9.EC.75Surite(Pb,Ca)3(Al,Fe2+,Mg)2((Si,Al)4O10)(CO3)2(OH)2Mon. 2 : P21
9.EC.80KegelitePb8Al4(Si8O20)(SO4)2(CO3)4(OH)8Mon.

RadioactivityHide

Radioactivity:
Element % Content Activity (Bq/kg) Radiation Type
Uranium (U) 0.0000% 0 α, β, γ
Thorium (Th) 0.0000% 0 α, β, γ
Potassium (K) 5.6476% 1,751 β, γ

For comparison:

  • Banana: ~15 Bq per fruit
  • Granite: 1,000–3,000 Bq/kg
  • EU exemption limit: 10,000 Bq/kg

Note: Risk is shown relative to daily recommended maximum exposure to non-background radiation of 1000 µSv/year. Note that natural background radiation averages around 2400 µSv/year so in reality these risks are probably extremely overstated! With infrequent handling and safe storage natural radioactive minerals do not usually pose much risk.

Interactive Simulator:

Note: The mass selector refers to the mass of radioactive mineral present, not the full specimen, also be aware that the matrix may also be radioactive, possibly more radioactive than this mineral!

Activity:

DistanceDose rateRisk
1 cm
10 cm
1 m

The external dose rate (D) from a radioactive mineral is estimated by summing the gamma radiation contributions from its Uranium, Thorium, and Potassium content, disregarding daughter-product which may have a significant effect in some cases (eg 'pitchblende'). This involves multiplying the activity (A, in Bq) of each element by its specific gamma ray constant (Γ), which accounts for its unique gamma emissions. The total unshielded dose at 1 cm is then scaled by the square of the distance (r, in cm) and multiplied by a shielding factor (μshield). This calculation provides a 'worst-case' or 'maximum risk' estimate because it assumes the sample is a point source and entirely neglects any self-shielding where radiation is absorbed within the mineral itself, meaning actual doses will typically be lower. The resulting dose rate (D) is expressed in microsieverts per hour (μSv/h).

D = ((AU × ΓU) + (ATh × ΓTh) + (AK × ΓK)) / r2 × μshield

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

Internet Links for FluorluanshiweiiteHide

References for FluorluanshiweiiteHide

Localities for FluorluanshiweiiteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for references and further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (e.g. from pseudomorphs).

All localities listed without proper references should be considered as questionable.
China
 
  • Henan
    • Sanmenxia
      • Lushi County
Qu et al. (2023)
Mineralogical Magazine +2 other references
 
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: December 4, 2025 07:33:08 Page updated: December 3, 2025 03:45:21
Go to top of page