Leonite
About Leonite
Unique Identifiers
IMA Classification of Leonite
Classification of Leonite
7 : SULFATES (selenates, tellurates, chromates, molybdates, wolframates)
C : Sulfates (selenates, etc.) without additional anions, with H2O
C : With medium-sized and large cations
29 : HYDRATED ACID AND NORMAL SULFATES
3 : A2B(XO4)2·xH2O
25 : Sulphates
3 : Sulphates of Mg
Mineral Symbols
| Symbol | Source | Reference |
|---|---|---|
| Leo | IMA–CNMNC | Warr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. doi:10.1180/mgm.2021.43 |
Physical Properties of Leonite
Optical Data of Leonite
Based on recorded range of RI values above.
The colours simulate birefringence patterns seen in thin section under crossed polars. They do not take into account mineral colouration or opacity.
Michel-Levy Bar The default colours simulate the birefringence range for a 30 µm thin-section thickness. Adjust the slider to simulate a different thickness.
Grain Simulation You can rotate the grain simulation to show how this range might look as you rotated a sample under crossed polars.
Chemistry of Leonite
Crystallography of Leonite
β = 95.31(2)°
Crystal Structure
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
CIF File Best | x | y | z | a | b | c
Stop | Start
Console Off | On | Grey | Yellow
| ID | Species | Reference | Link | Year | Locality | Pressure (GPa) | Temp (K) |
|---|---|---|---|---|---|---|---|
| 0002727 | Leonite | Hertweck B, Giester G, Libowitzky E (2001) The crystal structures of the low-temperature phases of leonite-type compounds, K2Me(SO4)2.4H2O (Me=Mg,Mn,Fe) American Mineralogist 86 1282-1292 | ![]() | 2001 | 0 | 100 | |
| 0002728 | Leonite | Hertweck B, Giester G, Libowitzky E (2001) The crystal structures of the low-temperature phases of leonite-type compounds, K2Me(SO4)2.4H2O (Me=Mg,Mn,Fe) American Mineralogist 86 1282-1292 | ![]() | 2001 | 0 | 170 | |
| 0002729 | Leonite | Hertweck B, Giester G, Libowitzky E (2001) The crystal structures of the low-temperature phases of leonite-type compounds, K2Me(SO4)2.4H2O (Me=Mg,Mn,Fe) American Mineralogist 86 1282-1292 | ![]() | 2001 | 0 | 293 | |
| 0002730 | Leonite | Hertweck B, Giester G, Libowitzky E (2001) The crystal structures of the low-temperature phases of leonite-type compounds, K2Me(SO4)2.4H2O (Me=Mg,Mn,Fe) American Mineralogist 86 1282-1292 | ![]() | 2001 | 0 | 110 | |
| 0002731 | Leonite | Hertweck B, Giester G, Libowitzky E (2001) The crystal structures of the low-temperature phases of leonite-type compounds, K2Me(SO4)2.4H2O (Me=Mg,Mn,Fe) American Mineralogist 86 1282-1292 | ![]() | 2001 | 0 | 185 | |
| 0002732 | Leonite | Hertweck B, Giester G, Libowitzky E (2001) The crystal structures of the low-temperature phases of leonite-type compounds, K2Me(SO4)2.4H2O (Me=Mg,Mn,Fe) American Mineralogist 86 1282-1292 | ![]() | 2001 | 0 | 293 | |
| 0017943 | Leonite | Anspach H (1939) Die Struktur des Mn-Leonit _cod_database_code 1011041 Zeitschrift fur Kristallographie 101 39-77 | 1939 | 0 | 293 |
X-Ray Powder Diffraction
| d-spacing | Intensity |
|---|---|
| 3.42 Å | (100) |
| 3.04 Å | (48) |
| 2.38 Å | (47) |
| 3.49 Å | (41) |
| 3.31 Å | (36) |
| 2.88 Å | (27) |
| 5.88 Å | (22) |
Geological Environment
| Paragenetic Mode | Earliest Age (Ga) |
|---|---|
| Near-surface Processes | |
| 25 : Evaporites (prebiotic) | |
| Stage 7: Great Oxidation Event | <2.4 |
| 45a : [Sulfates, arsenates, selenates, antimonates] |
Type Occurrence of Leonite
Synonyms of Leonite
Other Language Names for Leonite
Relationship of Leonite to other Species
Common Associates
Related Minerals - Strunz-mindat Grouping
| 7.CC. | Cobaltoblödite | Na2Co(SO4)2 · 4H2O |
| 7.CC. | Andychristyite | PbCu2+Te6+O5(H2O) |
| 7.CC. | Ammoniovoltaite | (NH4)2Fe2+5Fe3+3Al(SO4)12(H2O)18 |
| 7.CC.05 | Krausite | KFe(SO4)2 · H2O |
| 7.CC.10 | Tamarugite | NaAl(SO4)2 · 6H2O |
| 7.CC.15 | Mendozite | NaAl(SO4)2 · 11H2O |
| 7.CC.15 | Kalinite | KAl(SO4)2 · 11H2O |
| 7.CC.20 | Alum-(Na) | NaAl(SO4)2 · 12H2O |
| 7.CC.20 | Lonecreekite | (NH4)Fe3+(SO4)2 · 12H2O |
| 7.CC.20 | Alum-(K) | KAl(SO4)2 · 12H2O |
| 7.CC.20 | Tschermigite | (NH4)Al(SO4)2 · 12H2O |
| 7.CC.20 | Lanmuchangite | Tl+Al(SO4)2 · 12H2O |
| 7.CC.25 | Zincovoltaite | K2Zn5Fe3+3Al(SO4)12 · 18H2O |
| 7.CC.25 | Voltaite | K2Fe2+5Fe3+3Al(SO4)12 · 18H2O |
| 7.CC.25 | Magnesiovoltaite | K2Mg5Fe3+3Al(SO4)12 · 18H2O |
| 7.CC.25 | Pertlikite | K2(Fe2+,Mg)2(Mg,Fe3+)4Fe3+2Al(SO4)12 · 18H2O |
| 7.CC.25 | Ammoniomagnesiovoltaite | (NH4)2Mg2+5Fe3+3Al(SO4)12 · 18H2O |
| 7.CC.30 | Kröhnkite | Na2Cu(SO4)2 · 2H2O |
| 7.CC.35 | Ferrinatrite | Na3Fe(SO4)3 · 3H2O |
| 7.CC.40 | Goldichite | KFe(SO4)2 · 4H2O |
| 7.CC.45 | Löweite | Na12Mg7(SO4)13 · 15H2O |
| 7.CC.50 | Nickelblödite | Na2Ni(SO4)2 · 4H2O |
| 7.CC.50 | Blödite | Na2Mg(SO4)2 · 4H2O |
| 7.CC.50 | Changoite | Na2Zn(SO4)2 · 4H2O |
| 7.CC.55 | Mereiterite | K2Fe(SO4)2 · 4H2O |
| 7.CC.60 | Nickelpicromerite | K2Ni(SO4)2 · 6H2O |
| 7.CC.60 | Nickelboussingaultite | (NH4)2Ni(SO4)2 · 6H2O |
| 7.CC.60 | Katerinopoulosite | (NH4)2Zn(SO4)2 · 6H2O |
| 7.CC.60 | Picromerite | K2Mg(SO4)2 · 6H2O |
| 7.CC.60 | Cyanochroite | K2Cu(SO4)2 · 6H2O |
| 7.CC.60 | Mohrite | (NH4)2Fe(SO4)2 · 6H2O |
| 7.CC.60 | Boussingaultite | (NH4)2Mg(SO4)2 · 6H2O |
| 7.CC.65 | Polyhalite | K2Ca2Mg(SO4)4 · 2H2O |
| 7.CC.70 | Leightonite | K2Ca2Cu(SO4)4 · 2H2O |
| 7.CC.75 | Amarillite | NaFe(SO4)2 · 6H2O |
| 7.CC.80 | Konyaite | Na2Mg(SO4)2 · 5H2O |
| 7.CC.85 | Wattevilleite | Na2Ca(SO4)2 · 4H2O (?) |
| 7.CC.85 | Xocolatlite | Ca2Mn4+2(Te6+O6)2 · H2O |
| 7.CC.90 | Eckhardite | (Ca,Pb)Cu2+Te6+O5(H2O) |
Radioactivity
| Element | % Content | Activity (Bq/kg) | Radiation Type |
|---|---|---|---|
| Uranium (U) | 0.0000% | 0 | α, β, γ |
| Thorium (Th) | 0.0000% | 0 | α, β, γ |
| Potassium (K) | 21.3251% | 6,611 | β, γ |
For comparison:
- Banana: ~15 Bq per fruit
- Granite: 1,000–3,000 Bq/kg
- EU exemption limit: 10,000 Bq/kg
Note: Risk is shown relative to daily recommended maximum exposure to non-background radiation of 1000 µSv/year. Note that natural background radiation averages around 2400 µSv/year so in reality these risks are probably extremely overstated! With infrequent handling and safe storage natural radioactive minerals do not usually pose much risk.
Note: The mass selector refers to the mass of radioactive mineral present, not the full specimen, also be aware that the matrix may also be radioactive, possibly more radioactive than this mineral!
Activity: –
| Distance | Dose rate | Risk |
|---|---|---|
| 1 cm | ||
| 10 cm | ||
| 1 m |
The external dose rate (D) from a radioactive mineral is estimated by summing the gamma radiation contributions from its Uranium, Thorium, and Potassium content, disregarding daughter-product which may have a significant effect in some cases (eg 'pitchblende'). This involves multiplying the activity (A, in Bq) of each element by its specific gamma ray constant (Γ), which accounts for its unique gamma emissions. The total unshielded dose at 1 cm is then scaled by the square of the distance (r, in cm) and multiplied by a shielding factor (μshield). This calculation provides a 'worst-case' or 'maximum risk' estimate because it assumes the sample is a point source and entirely neglects any self-shielding where radiation is absorbed within the mineral itself, meaning actual doses will typically be lower. The resulting dose rate (D) is expressed in microsieverts per hour (μSv/h).
D = ((AU × ΓU) + (ATh × ΓTh) + (AK × ΓK)) / r2 × μshield
Other Information
Internet Links for Leonite
Please feel free to link to this page.
References for Leonite
Localities for Leonite
Locality List
- This locality has map coordinates listed.
- This locality has estimated coordinates.
ⓘ - Click for references and further information on this occurrence.
? - Indicates mineral may be doubtful at this locality.
- Good crystals or important locality for species.
- World class for species or very significant.
(TL) - Type Locality for a valid mineral species.
(FRL) - First Recorded Locality for everything else (eg varieties).
All localities listed without proper references should be considered as questionable.
Australia | |
| Snow et al. (2014) |
Austria | |
| Exel (1993) |
Chile | |
| De Waele et al. (2017) |
| De Waele et al. (2017) | |
China | |
| Mily Wang et al. (1993) |
| Xiaohong Sun et al. (2010) |
| Bingxiao (1992) |
Germany | |
| Krah et al. (1988) |
| Weiß (1990) |
| Weiß (1990) |
| Weiß (1990) |
| Bode "Mineralien und Fundstellen BRD" ... |
| according information from old germany ... |
| |
| Wittern (2001) |
| Brockt et al. (2001) |
| Palache et al. (1951) | |
| Palache et al. (1951) | |
| ... | |
| W.I. Borrisenkow (1968) |
Iran | |
| Khorasanipour (2015) |
Italy | |
| Russo et al. (2004) |
| Mariani P. (1978) |
Kazakhstan | |
| Pekov et al. (1993) |
Namibia | |
| Bowell et al. (2017) |
Pakistan | |
| M. Qasim Jan et al. (1985) |
Romania | |
| - (2001) |
Russia | |
| Shablinskii et al. (2022) |
Ukraine | |
| BILONIZHKA (2003) |
USA | |
| Palache et al. (1951) +1 other reference |
| Hawley +5 other references |
| Philip (2013) | |
| Palache et al. (1951) +1 other reference |





symbol to view information about a locality.
The
Neuhof-Ellers potash works, Neuhof, Fulda, Kassel Region, Hesse, Germany