Deloryite
About Deloryite
Unique Identifiers
IMA Classification of Deloryite
Classification of Deloryite
4 : OXIDES (Hydroxides, V[5,6] vanadates, arsenites, antimonites, bismuthites, sulfites, selenites, tellurites, iodates)
F : Hydroxides (without V or U)
L : Hydroxides with H2O +- (OH); sheets of edge-sharing octahedra
48 : ANHYDROUS MOLYBDATES AND TUNGSTATES
3 : Basic Anhydrous Molybdates and Tungstates
Mineral Symbols
| Symbol | Source | Reference |
|---|---|---|
| Dlo | IMA–CNMNC | Warr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. doi:10.1180/mgm.2021.43 |
Physical Properties of Deloryite
cleavages perfect {010}, {100}, good {001}
Optical Data of Deloryite
Based on recorded range of RI values above.
The colours simulate birefringence patterns seen in thin section under crossed polars. They do not take into account mineral colouration or opacity.
Michel-Levy Bar The default colours simulate the birefringence range for a 30 µm thin-section thickness. Adjust the slider to simulate a different thickness.
Grain Simulation You can rotate the grain simulation to show how this range might look as you rotated a sample under crossed polars.
Chemistry of Deloryite
Crystallography of Deloryite
β = 103.9°
Crystal Structure
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
CIF File Best | x | y | z | a | b | c
Stop | Start
Console Off | On | Grey | Yellow
| ID | Species | Reference | Link | Year | Locality | Pressure (GPa) | Temp (K) |
|---|---|---|---|---|---|---|---|
| 0012779 | Deloryite | Pushcharovsky D Y, Rastsvetaeva R K, Sarp H (1996) Crystal structure of deloryite, Cu4(UO2)[Mo2O8](OH)6 Journal of Alloys and Compounds 239 23-26 | 1996 | Cap Garonne mine, Var, France | 0 | 293 | |
| 0018337 | Deloryite | Tali R, Tabachenko V V, Kovba L M (1993) Crystal structure of Cu4UO2(MoO4)2(OH)6 Russian Journal of Inorganic Chemistry 38 1350-1352 | 1993 | synthetic | 0 | 293 |
X-Ray Powder Diffraction
| d-spacing | Intensity |
|---|---|
| 4.100 Å | (100) |
| 3.734 Å | (90) |
| 4.815 Å | (80) |
| 2.482 Å | (60) |
| 4.425 Å | (40) |
| 4.276 Å | (40) |
| 3.254 Å | (40) |
Geological Environment
| Paragenetic Mode | Earliest Age (Ga) |
|---|---|
| Stage 7: Great Oxidation Event | <2.4 |
| 47a : [Near-surface hydration of prior minerals] | |
| 47f : [Uranyl (U⁶⁺) minerals] |
Type Occurrence of Deloryite
Synonyms of Deloryite
Other Language Names for Deloryite
Common Associates
| 1 photo of Deloryite associated with Metazeunerite | Cu(UO2)2(AsO4)2 · 8H2O |
Related Minerals - Strunz-mindat Grouping
| 4.FL. | Trébeurdenite | Fe2+2Fe3+4O2(OH)10CO3 · 3H2O |
| 4.FL. | Mariakrite | [Ca4Al2(OH)12(H2O)4][Fe2S4] |
| 4.FL.05 | Muskoxite | Mg7Fe4O13 · 10H2O |
| 4.FL.05 | Jamborite | Ni2+1-xCo3+x(OH)2-x(SO4)x · nH2O |
| 4.FL.05 | Mössbauerite | Fe3+6O4(OH)8[CO3] · 3H2O |
| 4.FL.05 | Meixnerite | Mg6Al2(OH)16(OH)2 · 4H2O |
| 4.FL.05 | Woodallite | Mg6Cr2(OH)16Cl2 · 4H2O |
| 4.FL.05 | Fougèrite | Fe2+4Fe3+2(OH)12[CO3] · 3H2O |
| 4.FL.05 | Dritsite | Li2Al4(OH)12Cl2 · 3H2O |
| 4.FL.05 | Rotemite | Ca4Cr2(OH)12Cl2 · 4H2O |
| 4.FL.05 | Iowaite | Mg6Fe3+2(OH)16Cl2 · 4H2O |
| 4.FL.10 | Hydrocalumite | Ca4Al2(OH)12(Cl,CO3,OH)2 · 4H2O |
| 4.FL.15 | Kuzelite | Ca4Al2(OH)12[SO4] · 6H2O |
| 4.FL.20 | Jianshuiite | (Mg,Mn,Ca)Mn3O7 · 3H2O |
| 4.FL.20 | Ernienickelite | NiMn3O7 · 3H2O |
| 4.FL.20 | Aurorite | Mn2+Mn4+3O7 · 3H2O |
| 4.FL.20 | Chalcophanite | ZnMn4+3O7 · 3H2O |
| 4.FL.25 | Woodruffite | Zn2+x/2(Mn4+1-xMn3+x)O2 · yH2O |
| 4.FL.30 | Asbolane | (Ni,Co)2-xMn4+(O,OH)4 · nH2O |
| 4.FL.30 va | Lampadite | Cu, Mn, O, H |
| 4.FL.35 | Buserite | Na4Mn14O27 · 21H2O |
| 4.FL.40 | Takanelite | (Mn,Ca)Mn4O9 · H2O |
| 4.FL.40 | Ranciéite | (Ca,Mn2+)0.2(Mn4+,Mn3+)O2 · 0.6H2O |
| 4.FL.45 | Birnessite | (Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O |
| 4.FL.55 | Cianciulliite | Mn(Mg,Mn)2Zn2(OH)10 · 2-4H2O |
| 4.FL.60 | Jensenite | Cu3[TeO6] · 2H2O |
| 4.FL.65 | Leisingite | Cu2MgTe6+O6 · 6H2O |
| 4.FL.70 | Akdalaite | Al10O14(OH)2 |
| 4.FL.75 | Cafetite | CaTi2O5 · H2O |
| 4.FL.80 | Mourite | UMo5O12(OH)10 |
| 4.FL.90 | Lagalyite | Ca2xMn1-xO2 · 1.5-2H2O |
| 4.FL.95 | Tunnerite (of Cornu) | |
| 4.FL.100 | Carbocalumite | Ca4Al2(OH)12(CO3) · 6H2O |
| 4.FL.100 | Mampsisite | Ca4Al2(CO3)(OH)12 · 5H2O |
Radioactivity
| Element | % Content | Activity (Bq/kg) | Radiation Type |
|---|---|---|---|
| Uranium (U) | 25.1571% | 6,289,275 | α, β, γ |
| Thorium (Th) | 0.0000% | 0 | α, β, γ |
| Potassium (K) | 0.0000% | 0 | β, γ |
For comparison:
- Banana: ~15 Bq per fruit
- Granite: 1,000–3,000 Bq/kg
- EU exemption limit: 10,000 Bq/kg
Note: Risk is shown relative to daily recommended maximum exposure to non-background radiation of 1000 µSv/year. Note that natural background radiation averages around 2400 µSv/year so in reality these risks are probably extremely overstated! With infrequent handling and safe storage natural radioactive minerals do not usually pose much risk.
Note: The mass selector refers to the mass of radioactive mineral present, not the full specimen, also be aware that the matrix may also be radioactive, possibly more radioactive than this mineral!
Activity: –
| Distance | Dose rate | Risk |
|---|---|---|
| 1 cm | ||
| 10 cm | ||
| 1 m |
The external dose rate (D) from a radioactive mineral is estimated by summing the gamma radiation contributions from its Uranium, Thorium, and Potassium content, disregarding daughter-product which may have a significant effect in some cases (eg 'pitchblende'). This involves multiplying the activity (A, in Bq) of each element by its specific gamma ray constant (Γ), which accounts for its unique gamma emissions. The total unshielded dose at 1 cm is then scaled by the square of the distance (r, in cm) and multiplied by a shielding factor (μshield). This calculation provides a 'worst-case' or 'maximum risk' estimate because it assumes the sample is a point source and entirely neglects any self-shielding where radiation is absorbed within the mineral itself, meaning actual doses will typically be lower. The resulting dose rate (D) is expressed in microsieverts per hour (μSv/h).
D = ((AU × ΓU) + (ATh × ΓTh) + (AK × ΓK)) / r2 × μshield
Other Information
Internet Links for Deloryite
Please feel free to link to this page.
References for Deloryite
Localities for Deloryite
Locality List
- This locality has map coordinates listed.
- This locality has estimated coordinates.
ⓘ - Click for references and further information on this occurrence.
? - Indicates mineral may be doubtful at this locality.
- Good crystals or important locality for species.
- World class for species or very significant.
(TL) - Type Locality for a valid mineral species.
(FRL) - First Recorded Locality for everything else (eg varieties).
All localities listed without proper references should be considered as questionable.
France | |
| Dal Bo et al. (2018) |
| Sarp et al. (1992) +1 other reference |



symbol to view information about a locality.
The
Cap Garonne Mine, Le Pradet, Toulon, Var, Provence-Alpes-Côte d'Azur, France