Przhevalskite
About Przhevalskite
Unique Identifiers
IMA Classification of Przhevalskite
Classification of Przhevalskite
8 : PHOSPHATES, ARSENATES, VANADATES
E : Uranyl phosphates and arsenates
B : UO2:RO4 = 1:1
40 : HYDRATED NORMAL PHOSPHATES,ARSENATES AND VANADATES
2a : AB2(XO4)2·xH2O, containing (UO2)2+
19 : Phosphates
11 : Phosphates of U
Mineral Symbols
| Symbol | Source | Reference |
|---|---|---|
| Prz | IMA–CNMNC | Warr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. doi:10.1180/mgm.2021.43 |
Physical Properties of Przhevalskite
{001}, good.
Optical Data of Przhevalskite
Based on recorded range of RI values above.
The colours simulate birefringence patterns seen in thin section under crossed polars. They do not take into account mineral colouration or opacity.
Michel-Levy Bar The default colours simulate the birefringence range for a 30 µm thin-section thickness. Adjust the slider to simulate a different thickness.
Grain Simulation You can rotate the grain simulation to show how this range might look as you rotated a sample under crossed polars.
Chemistry of Przhevalskite
Crystallography of Przhevalskite
X-Ray Powder Diffraction
| d-spacing | Intensity |
|---|---|
| 3.610 Å | (10) |
| 9.080 Å | (9) |
| 1.619 Å | (6) |
| 1.530 Å | (6) |
| 9.490 Å | (5) |
| 2.629 Å | (5) |
| 1.960 Å | (5) |
Geological Environment
| Paragenetic Mode | Earliest Age (Ga) |
|---|---|
| Stage 7: Great Oxidation Event | <2.4 |
| 47a : [Near-surface hydration of prior minerals] | |
| 47c : [Carbonates, phosphates, borates, nitrates] | |
| 47f : [Uranyl (U⁶⁺) minerals] |
Type Occurrence of Przhevalskite
Other Language Names for Przhevalskite
Related Minerals - Strunz-mindat Grouping
| 8.EB. | Meta-autunite Group | A1-2(UO2)2(TO4)2 · 5-10H2O |
| 8.EB.05 | Rauchite | Ni(UO2)2(AsO4)2 · 10H2O |
| 8.EB.05 | Uranocircite | Ba(UO2)2(PO4)2 · 10H2O |
| 8.EB.05 | Uranospinite | Ca(UO2)2(AsO4)2 · 10H2O |
| 8.EB.05 | Zeunerite | Cu(UO2)2(AsO4)2 · 12H2O |
| 8.EB.05 | Metarauchite | Ni(UO2)2(AsO4)2 · 8H2O |
| 8.EB.05 | Heinrichite | Ba(UO2)2(AsO4)2 · 10H2O |
| 8.EB.05 | Kahlerite | Fe(UO2)2(AsO4)2 · 12H2O |
| 8.EB.05 | Hydronováčekite | Mg(UO2)2(AsO4)2 · 12H2O |
| 8.EB.05 | Torbernite | Cu(UO2)2(PO4)2 · 12H2O |
| 8.EB.05 | Nováčekite | Mg(UO2)2(AsO4)2 · 10H2O |
| 8.EB.05 | Autunite | Ca(UO2)2(PO4)2 · 10-12H2O |
| 8.EB.05 | Saléeite | Mg(UO2)2(PO4)2 · 10H2O |
| 8.EB.05 | Xiangjiangite | (Fe3+,Al)(UO2)4(PO4)2(SO4)2(OH) · 22H2O |
| 8.EB.10 | Bassetite | Fe2+(UO2)2(PO4)2 · 10H2O |
| 8.EB.10 | Lehnerite | Mn2+(UO2)2(PO4)2 · 8H2O |
| 8.EB.10 | Meta-autunite | Ca(UO2)2(PO4)2 · 6H2O |
| 8.EB.10 | Metasaléeite | Mg(UO2)2(PO4)2 · 8H2O |
| 8.EB.10 | Metauranocircite | Ba(UO2)2(PO4)2 · 7H2O |
| 8.EB.10 | Metauranospinite | Ca(UO2)2(AsO4)2 · 8H2O |
| 8.EB.10 | Metaheinrichite | Ba(UO2)2(AsO4)2 · 8H2O |
| 8.EB.10 | Metakahlerite | Fe2+(UO2)2(AsO4)2 · 8H2O |
| 8.EB.10 | Metakirchheimerite | Co(UO2)2(AsO4)2 · 8H2O |
| 8.EB.10 | Metanováčekite | Mg(UO2)2(AsO4)2 · 8H2O |
| 8.EB.10 | Metanatroautunite | Na(UO2)(PO4)(H2O)3 |
| 8.EB.10 | Metatorbernite | Cu(UO2)2(PO4)2 · 8H2O |
| 8.EB.10 | Metazeunerite | Cu(UO2)2(AsO4)2 · 8H2O |
| 8.EB.10 | Pseudo-autunite | (H3O)4Ca2(UO2)2(PO4)4 · 5H2O |
| 8.EB.15 | Abernathyite | K(UO2)(AsO4) · 3H2O |
| 8.EB.15 | Uramphite | (NH4)2(UO2)2(PO4)2 · 6H2O |
| 8.EB.15 | Meta-ankoleite | K2(UO2)2(PO4)2 · 6H2O |
| 8.EB.15 | Natrouranospinite | Na2(UO2)2(AsO4)2 · 5H2O |
| 8.EB.15 | Trögerite | (H3O)(UO2)(AsO4) · 3H2O |
| 8.EB.15 | Chernikovite | (H3O)2(UO2)2(PO4)2 · 6H2O |
| 8.EB.15 | Uramarsite | (NH4)(UO2)(AsO4) · 3H2O |
| 8.EB.20 | Chistyakovaite | Al(UO2)2(AsO4)2(F,OH) · 6.5H2O |
| 8.EB.20 | Threadgoldite | Al(UO2)2(PO4)2(OH) · 8H2O |
| 8.EB.25 | Uranospathite | (Al,◻)(UO2)2(PO4)2F · 20(H2O,F) |
| 8.EB.25 | Arsenuranospathite | Al(UO2)2(AsO4)2F · 20H2O |
| 8.EB.30 | Vochtenite | (Fe2+,Mg)Fe3+(UO2)4(PO4)4(OH) · 12-13H2O |
| 8.EB.35 | Coconinoite | Fe3+2Al2(UO2)2(PO4)4(SO4)(OH)2 · 20H2O |
| 8.EB.40 | Ranunculite | HAl(UO2)(PO4)(OH)3 · 4H2O |
| 8.EB.45 | Triangulite | Al3(UO2)4(PO4)4(OH)5 · 5H2O |
| 8.EB.50 | Furongite | Al13(UO2)7(PO4)13(OH)14 · 58H2O |
| 8.EB.55 | Sabugalite | HAl(UO2)4(PO4)4 · 16H2O |
| 8.EB.60 | Horákite | (Bi7O7OH)[(UO2)4(PO4)2(AsO4)2(OH)2] · 3.5H2O |
Radioactivity
| Element | % Content | Activity (Bq/kg) | Radiation Type |
|---|---|---|---|
| Uranium (U) | 46.4749% | 11,618,725 | α, β, γ |
| Thorium (Th) | 0.0000% | 0 | α, β, γ |
| Potassium (K) | 0.0000% | 0 | β, γ |
For comparison:
- Banana: ~15 Bq per fruit
- Granite: 1,000–3,000 Bq/kg
- EU exemption limit: 10,000 Bq/kg
Note: Risk is shown relative to daily recommended maximum exposure to non-background radiation of 1000 µSv/year. Note that natural background radiation averages around 2400 µSv/year so in reality these risks are probably extremely overstated! With infrequent handling and safe storage natural radioactive minerals do not usually pose much risk.
Note: The mass selector refers to the mass of radioactive mineral present, not the full specimen, also be aware that the matrix may also be radioactive, possibly more radioactive than this mineral!
Activity: –
| Distance | Dose rate | Risk |
|---|---|---|
| 1 cm | ||
| 10 cm | ||
| 1 m |
The external dose rate (D) from a radioactive mineral is estimated by summing the gamma radiation contributions from its Uranium, Thorium, and Potassium content, disregarding daughter-product which may have a significant effect in some cases (eg 'pitchblende'). This involves multiplying the activity (A, in Bq) of each element by its specific gamma ray constant (Γ), which accounts for its unique gamma emissions. The total unshielded dose at 1 cm is then scaled by the square of the distance (r, in cm) and multiplied by a shielding factor (μshield). This calculation provides a 'worst-case' or 'maximum risk' estimate because it assumes the sample is a point source and entirely neglects any self-shielding where radiation is absorbed within the mineral itself, meaning actual doses will typically be lower. The resulting dose rate (D) is expressed in microsieverts per hour (μSv/h).
D = ((AU × ΓU) + (ATh × ΓTh) + (AK × ΓK)) / r2 × μshield
Other Information
Internet Links for Przhevalskite
Please feel free to link to this page.
References for Przhevalskite
Localities for Przhevalskite
Locality List
- This locality has map coordinates listed.
- This locality has estimated coordinates.
ⓘ - Click for references and further information on this occurrence.
? - Indicates mineral may be doubtful at this locality.
- Good crystals or important locality for species.
- World class for species or very significant.
(TL) - Type Locality for a valid mineral species.
(FRL) - First Recorded Locality for everything else (eg varieties).
All localities listed without proper references should be considered as questionable.
China | |
| National Geological Archives of China ... |
Tajikistan (TL) | |
| Гецева et al. (1956) +3 other references |


symbol to view information about a locality.
The
Dzherkamar uranium deposit, Adrasmon, Ghafurov District, Sughd, Tajikistan