Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral QuizTime Machine
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Coconinoite

A valid IMA mineral species
This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About CoconinoiteHide

01807560017271922264202.jpg
Logo of Coconino County, Arizona, USA
Formula:
Fe3+2Al2(UO2)2(PO4)4(SO4)(OH)2 · 20H2O
Colour:
Pale creamy yellow
Specific Gravity:
2.70
Crystal System:
Monoclinic
Name:
Named for Coconino county, Arizona, USA, which includes the type locality.
This page provides mineralogical data about Coconinoite.


Unique IdentifiersHide

Mindat ID:
1102
Long-form identifier:
mindat:1:1:1102:6

IMA Classification of CoconinoiteHide

Classification of CoconinoiteHide

8.EB.35

8 : PHOSPHATES, ARSENATES, VANADATES
E : Uranyl phosphates and arsenates
B : UO2:RO4 = 1:1
43.5.5.1

43 : COMPOUND PHOSPHATES, ETC.
5 : Hydrated Compound Phosphates, etc·, Containing Hydroxyl or Halogen
22.3.20

22 : Phosphates, Arsenates or Vanadates with other Anions
3 : Phosphates, arsenates or vanadates with sulphates

Mineral SymbolsHide

As of 2021 there are now IMA–CNMNC approved mineral symbols (abbreviations) for each mineral species, useful for tables and diagrams.

SymbolSourceReference
CocIMA–CNMNCWarr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. doi:10.1180/mgm.2021.43

Physical Properties of CoconinoiteHide

Transparency:
Translucent
Colour:
Pale creamy yellow
Comment:
Soft
Density:
2.70 g/cm3 (Measured)    2.68 g/cm3 (Calculated)

Optical Data of CoconinoiteHide

Type:
Biaxial (-)
RI values:
nα = 1.550 nβ = 1.588 nγ = 1.590
2V:
Measured: 28° to 43°, Calculated: 24°
Max. Birefringence:
δ = 0.040
Based on recorded range of RI values above.

Interference Colours:
The colours simulate birefringence patterns seen in thin section under crossed polars. They do not take into account mineral colouration or opacity.

Michel-Levy Bar The default colours simulate the birefringence range for a 30 µm thin-section thickness. Adjust the slider to simulate a different thickness.

Grain Simulation You can rotate the grain simulation to show how this range might look as you rotated a sample under crossed polars.

Surface Relief:
Moderate
Dispersion:
r < v strong
Pleochroism:
Visible
Comments:
X= colorless
Y=Z= pale yellow

Chemistry of CoconinoiteHide

Mindat Formula:
Fe3+2Al2(UO2)2(PO4)4(SO4)(OH)2 · 20H2O
Element Weights:
Element% weight
O46.699 %
U30.207 %
P7.862 %
Fe7.087 %
Al3.424 %
H2.686 %
S2.035 %

Calculated from ideal end-member formula.
Common Impurities:
Fe,Cr

Crystallography of CoconinoiteHide

Crystal System:
Monoclinic
Cell Parameters:
a = 12.45(6) Å, b = 12.96(3) Å, c = 17.22(5) Å
β = 105.7°
Ratio:
a:b:c = 0.961 : 1 : 1.329
Unit Cell V:
2,674.82 ų (Calculated from Unit Cell)
Morphology:
Lathlike to platy grains, microcrystalline aggregates, seams, crusts.
Comment:
Tentative cell (from Belova et al., 1993); probable space group: C2/c or Cc.

X-Ray Powder DiffractionHide

Powder Diffraction Data:
d-spacingIntensity
12.3 Å(8)
11.1 Å(100)
9.2 Å(3)
8.66 Å(8)
8.40 Å(3)
7.66 Å(8)
7.28 Å(3)
6.24 Å(2)
5.91 Å(3)
5.64 Å(18)
5.56 Å(40)
5.02 Å(9)
4.59 Å(14)
4.50 Å(3)
4.31 Å(10)
4.21 Å(2)
4.17 Å(4)
4.05 Å(7)
3.97 Å(3)
3.91 Å(6)
3.82 Å(5)
3.77 Å(7)
3.71 Å(12)
3.46 Å(2)
3.39 Å(5)
3.36 Å(1)
3.30 Å(20)
3.26 Å(1)
3.18 Å(6)
3.12 Å(3b)
3.04 Å(1)
3.00 Å(5)
2.84 Å(7)
2.80 Å(4)
2.67 Å(7)
2.56 Å(3b)
Comments:
ICDD 25-16. Also numerous weak lines down to 1.040 (See Young, 1966).

Geological EnvironmentHide

Type Occurrence of CoconinoiteHide

Synonyms of CoconinoiteHide

Other Language Names for CoconinoiteHide

Common AssociatesHide

Associated Minerals Based on Photo Data:
4 photos of Coconinoite associated with GypsumCaSO4 · 2H2O
2 photos of Coconinoite associated with UraniniteUO2
1 photo of Coconinoite associated with JarositeKFe3+3(SO4)2(OH)6
1 photo of Coconinoite associated with Petrified Wood
1 photo of Coconinoite associated with Sandstone

Related Minerals - Strunz-mindat GroupingHide

8.EB.Meta-autunite GroupA1-2(UO2)2(TO4)2 · 5-10H2O
8.EB.05RauchiteNi(UO2)2(AsO4)2 · 10H2OTric. 1 : P1
8.EB.05UranocirciteBa(UO2)2(PO4)2 · 10H2OTet.
8.EB.05UranospiniteCa(UO2)2(AsO4)2 · 10H2OTet. 4/mmm (4/m 2/m 2/m) : P4/nmm
8.EB.05ZeuneriteCu(UO2)2(AsO4)2 · 12H2OTet. 4/mmm (4/m 2/m 2/m) : I4/mmm
8.EB.05MetarauchiteNi(UO2)2(AsO4)2 · 8H2OTric. 1 : P1
8.EB.05HeinrichiteBa(UO2)2(AsO4)2 · 10H2OMon. 2/m : P2/b
8.EB.05KahleriteFe(UO2)2(AsO4)2 · 12H2OTet. 4/m : P42/n
8.EB.05HydronováčekiteMg(UO2)2(AsO4)2 · 12H2OTric. 1 : P1
8.EB.05TorberniteCu(UO2)2(PO4)2 · 12H2OTet. 4/mmm (4/m 2/m 2/m) : I4/mmm
8.EB.05NováčekiteMg(UO2)2(AsO4)2 · 10H2OMon. 2/m
8.EB.05AutuniteCa(UO2)2(PO4)2 · 10-12H2OOrth. mmm (2/m 2/m 2/m) : Pnma
8.EB.05SaléeiteMg(UO2)2(PO4)2 · 10H2OMon. 2/m
8.EB.05Xiangjiangite(Fe3+,Al)(UO2)4(PO4)2(SO4)2(OH) · 22H2OTet.
8.EB.10BassetiteFe2+(UO2)2(PO4)2 · 10H2OMon. 2/m
8.EB.10LehneriteMn2+(UO2)2(PO4)2 · 8H2OMon. 2/m
8.EB.10Meta-autuniteCa(UO2)2(PO4)2 · 6H2OTet. 4/mmm (4/m 2/m 2/m)
8.EB.10MetasaléeiteMg(UO2)2(PO4)2 · 8H2O
8.EB.10MetauranocirciteBa(UO2)2(PO4)2 · 7H2OMon. 2 : P21
8.EB.10MetauranospiniteCa(UO2)2(AsO4)2 · 8H2OTet. 4/m : P42/n
8.EB.10MetaheinrichiteBa(UO2)2(AsO4)2 · 8H2OMon. 2 : P21
8.EB.10MetakahleriteFe2+(UO2)2(AsO4)2 · 8H2OTric. 1 : P1
8.EB.10MetakirchheimeriteCo(UO2)2(AsO4)2 · 8H2OTric. 1 : P1
8.EB.10MetanováčekiteMg(UO2)2(AsO4)2 · 8H2OTet. 4/m : P4/n
8.EB.10MetanatroautuniteNa(UO2)(PO4)(H2O)3Tet. 4/mmm (4/m 2/m 2/m) : P4/ncc
8.EB.10MetatorberniteCu(UO2)2(PO4)2 · 8H2OTet. 4/m : P4/n
8.EB.10MetazeuneriteCu(UO2)2(AsO4)2 · 8H2OTet. 4/m : P42/n
8.EB.10PrzhevalskitePb2(UO2)3(PO4)2(OH)4 · 3H2OTet.
8.EB.10Pseudo-autunite(H3O)4Ca2(UO2)2(PO4)4 · 5H2OOrth.
8.EB.15AbernathyiteK(UO2)(AsO4) · 3H2OTet. 4/mmm (4/m 2/m 2/m) : P4/ncc
8.EB.15Uramphite(NH4)2(UO2)2(PO4)2 · 6H2OTet. 4/mmm (4/m 2/m 2/m) : P4/nmm
8.EB.15Meta-ankoleiteK2(UO2)2(PO4)2 · 6H2OTet. 4/mmm (4/m 2/m 2/m) : P4/nmm
8.EB.15NatrouranospiniteNa2(UO2)2(AsO4)2 · 5H2OTet. 4/mmm (4/m 2/m 2/m) : P4/nmm
8.EB.15Trögerite(H3O)(UO2)(AsO4) · 3H2OTet. 4/mmm (4/m 2/m 2/m) : P4/nmm
8.EB.15Chernikovite(H3O)2(UO2)2(PO4)2 · 6H2OTet. 4/mmm (4/m 2/m 2/m) : P4/nmm
8.EB.15Uramarsite(NH4)(UO2)(AsO4) · 3H2OTet. 4/mmm (4/m 2/m 2/m) : P4/mmm
8.EB.20ChistyakovaiteAl(UO2)2(AsO4)2(F,OH) · 6.5H2OMon.
8.EB.20ThreadgolditeAl(UO2)2(PO4)2(OH) · 8H2OMon.
8.EB.25Uranospathite(Al,◻)(UO2)2(PO4)2F · 20(H2O,F)Orth. mm2 : Pnn2
8.EB.25ArsenuranospathiteAl(UO2)2(AsO4)2F · 20H2OOrth. mm2 : Pnn2
8.EB.30Vochtenite(Fe2+,Mg)Fe3+(UO2)4(PO4)4(OH) · 12-13H2OMon.
8.EB.40RanunculiteHAl(UO2)(PO4)(OH)3 · 4H2OMon. 2/m : B2/b
8.EB.45TrianguliteAl3(UO2)4(PO4)4(OH)5 · 5H2OTric.
8.EB.50FurongiteAl13(UO2)7(PO4)13(OH)14 · 58H2OTric. 1 : P1
8.EB.55SabugaliteHAl(UO2)4(PO4)4 · 16H2OMon. 2/m : B2/m
8.EB.60Horákite(Bi7O7OH)[(UO2)4(PO4)2(AsO4)2(OH)2] · 3.5H2OMon. 2/m : B2/b

RadioactivityHide

Radioactivity:
Element % Content Activity (Bq/kg) Radiation Type
Uranium (U) 30.2072% 7,551,800 α, β, γ
Thorium (Th) 0.0000% 0 α, β, γ
Potassium (K) 0.0000% 0 β, γ

For comparison:

  • Banana: ~15 Bq per fruit
  • Granite: 1,000–3,000 Bq/kg
  • EU exemption limit: 10,000 Bq/kg

Note: Risk is shown relative to daily recommended maximum exposure to non-background radiation of 1000 µSv/year. Note that natural background radiation averages around 2400 µSv/year so in reality these risks are probably extremely overstated! With infrequent handling and safe storage natural radioactive minerals do not usually pose much risk.

Interactive Simulator:

Note: The mass selector refers to the mass of radioactive mineral present, not the full specimen, also be aware that the matrix may also be radioactive, possibly more radioactive than this mineral!

Activity:

DistanceDose rateRisk
1 cm
10 cm
1 m

The external dose rate (D) from a radioactive mineral is estimated by summing the gamma radiation contributions from its Uranium, Thorium, and Potassium content, disregarding daughter-product which may have a significant effect in some cases (eg 'pitchblende'). This involves multiplying the activity (A, in Bq) of each element by its specific gamma ray constant (Γ), which accounts for its unique gamma emissions. The total unshielded dose at 1 cm is then scaled by the square of the distance (r, in cm) and multiplied by a shielding factor (μshield). This calculation provides a 'worst-case' or 'maximum risk' estimate because it assumes the sample is a point source and entirely neglects any self-shielding where radiation is absorbed within the mineral itself, meaning actual doses will typically be lower. The resulting dose rate (D) is expressed in microsieverts per hour (μSv/h).

D = ((AU × ΓU) + (ATh × ΓTh) + (AK × ΓK)) / r2 × μshield

Other InformationHide

Health Risks:
Radioactive

Internet Links for CoconinoiteHide

References for CoconinoiteHide

Localities for CoconinoiteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for references and further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (e.g. from pseudomorphs).

All localities listed without proper references should be considered as questionable.
Argentina
 
  • Catamarca Province
O. Morello y C. N. Reyes Encinas (1990)
O. Morello y C. N. Reyes Encinas (1990)
M. E. Saulnier y F. Greco (1988)
Italy
 
  • Sardinia
    • Metropolitan City of Cagliari
      • Capoterra
Lecca et al. (2011)
Switzerland
 
  • Valais
    • Saint-Maurice
      • Salvan
        • Les Marécottes
          • La Creusaz
Meisser (2012)
USA
 
  • Arizona
    • Apache County
      • Cane Valley Mining District
        • Yazzie Mesa
Young et al. (1966) +1 other reference
    • Coconino County
      • Cameron Mining District
        • Cameron
          • Huskon Mines (Huskon group)
Young et al. (1966) +1 other reference
      • Vermillion Cliffs Mining District
        • Marble Canyon
Young et al. (1966) +1 other reference
  • New Hampshire
    • Grafton County
      • Grafton
Young et al. (1966)
  • Utah
    • San Juan County
      • White Canyon Mining District
Young et al. (1966) +1 other reference
Mineralogical Society of America - ...
Uzbekistan
 
Belova +6 other references
 
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: December 4, 2025 06:14:37 Page updated: October 14, 2025 05:22:49
Go to top of page