Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral QuizTime Machine
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Paraumbite

A valid IMA mineral species
This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About ParaumbiteHide

Formula:
K3Zr2H(Si3O9)2 · nH2O
Colour:
Colorless to white, gray, pale green
Lustre:
Vitreous, Pearly
Hardness:
Specific Gravity:
2.59
Crystal System:
Orthorhombic
Name:
Name derives from the Greek 'para' for near, and umbite, for the close structural similarity to that mineral.
This page provides mineralogical data about Paraumbite.


Unique IdentifiersHide

Mindat ID:
3117
Long-form identifier:
mindat:1:1:3117:8

IMA Classification of ParaumbiteHide

Classification of ParaumbiteHide

9.DG.25

9 : SILICATES (Germanates)
D : Inosilicates
G : Inosilicates with 3-periodic single and multiple chains
59.2.1.2

59 : CYCLOSILICATES Three-Membered Rings
2 : Three-Membered Rings, hydrated
14.10.17

14 : Silicates not Containing Aluminum
10 : Silicates of Zr or Hf

Mineral SymbolsHide

As of 2021 there are now IMA–CNMNC approved mineral symbols (abbreviations) for each mineral species, useful for tables and diagrams.

SymbolSourceReference
PumbIMA–CNMNCWarr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. doi:10.1180/mgm.2021.43

Physical Properties of ParaumbiteHide

Vitreous, Pearly
Transparency:
Transparent, Translucent
Comment:
pearly on cleavages.
Colour:
Colorless to white, gray, pale green
Streak:
White
Hardness:
4½ on Mohs scale
Hardness:
VHN100=280 - 504 - Vickers
Cleavage:
Perfect
(010) micaceous, (100) and {110}, less perfect
Fracture:
Irregular/Uneven
Density:
2.59 g/cm3 (Measured)    2.92 g/cm3 (Calculated)

Optical Data of ParaumbiteHide

Type:
Biaxial (-)
RI values:
nα = 1.588(2) nβ = 1.601(2) nγ = 1.610(2)
2V:
Measured: 82° , Calculated: 78°
Max. Birefringence:
δ = 0.022
Based on recorded range of RI values above.

Interference Colours:
The colours simulate birefringence patterns seen in thin section under crossed polars. They do not take into account mineral colouration or opacity.

Michel-Levy Bar The default colours simulate the birefringence range for a 30 µm thin-section thickness. Adjust the slider to simulate a different thickness.

Grain Simulation You can rotate the grain simulation to show how this range might look as you rotated a sample under crossed polars.

Surface Relief:
Moderate
Dispersion:
relatively strong

Chemistry of ParaumbiteHide

Mindat Formula:
K3Zr2H(Si3O9)2 · nH2O
Element Weights:
Element% weight
O39.211 %
Si21.736 %
K15.130 %
H0.390 %

Calculated from ideal end-member formula.
Common Impurities:
Ti,Hf,Fe,Na,K

Crystallography of ParaumbiteHide

Crystal System:
Orthorhombic
Class (H-M):
mm2 - Pyramidal
Cell Parameters:
a = 10.36(2) Å, b = 13.27(2) Å, c = 14.56(1) Å
Ratio:
a:b:c = 0.781 : 1 : 1.097
Unit Cell V:
2,001.67 ų (Calculated from Unit Cell)
Z:
4
Comment:
Space Group: P2cm:

X-Ray Powder DiffractionHide

Powder Diffraction Data:
d-spacingIntensity
6.46 Å(80)
5.95 Å(100)
3.34 Å(70)
3.01 Å(90)
2.90 Å(70)
2.56 Å(60)

Geological EnvironmentHide

Paragenetic Mode(s):
Paragenetic ModeEarliest Age (Ga)
Stage 3a: Earth’s earliest Hadean crust>4.50
9 : Lava/xenolith minerals (hornfels, sanidinite facies)
Near-surface Processes
22 : Hydration and low-? subsurface aqueous alteration (see also #23)
Stage 4b: Highly evolved igneous rocks>3.0
35 : Ultra-alkali and agpaitic igneous rocks

Type Occurrence of ParaumbiteHide

General Appearance of Type Material:
Equant crystals, to 1 mm; massive.
Place of Conservation of Type Material:
Geology Museum, Kola Branch, Academy of Sciences, Apatity, Russia, 5842, 5843.
Mineralogical Museum, St. Petersburg University, St. Petersburg, Russia, 17065.
Mining Institute, St. Petersburg, Russia, 1630/1.
Il'menskii Preserve Museum, Miass, Russia, 13095vr.
A.E. Fersman Mineralogical Museum, Academy of Sciences, Moscow, Russia, 82760, vis3464, vis4544, vis4545, vis5045.
Geological Setting of Type Material:
Replacing wadeite in a pegmatite in a differentiated alkalic massif.
Associated Minerals at Type Locality:

Synonyms of ParaumbiteHide

Other Language Names for ParaumbiteHide

German:Paraumbit
Spanish:Paraumbita

Common AssociatesHide

Associated Minerals Based on Photo Data:
7 photos of Paraumbite associated with EudialyteNa15Ca6Fe3Zr3Si(Si25O73)(O,OH,H2O)3(Cl,OH)2
3 photos of Paraumbite associated with AegirineNaFe3+Si2O6
2 photos of Paraumbite associated with AstrophylliteK2NaFe2+7Ti2[Si4O12]2O2(OH)4F
1 photo of Paraumbite associated with NephelineNa3K(Al4Si4O16)

Related Minerals - Strunz-mindat GroupingHide

9.DG.Barrydawsonite-(Y)Na1.5Y0.5CaSi3O8(OH)Mon. 2/m : P21/b
9.DG.ParatobermoriteCa5AlSi5O16(OH) · 5H2OMon. 2/m
9.DG.CalcinaksiteKNaCa(Si4O10) · H2OTric. 1 : P1
9.DG.AlvesiteNaKZrSi6O15 · 2H2OOrth. mmm (2/m 2/m 2/m)
9.DG.02SteedeiteNaMn2[Si3BO9](OH)2Tric. 1 : P1
9.DG.02NolzeiteNaMn2[Si3BO9](OH)2 · 2H2OTric. 1 : P1
9.DG.05MurakamiiteLiCa2Si3O8(OH)Tric. 1 : P1
9.DG.05SeranditeNaMn2+2Si3O8(OH)Tric. 1 : P1
9.DG.05BustamiteCaMn2+(Si2O6)Tric. 1 : P1
9.DG.05PectoliteNaCa2Si3O8(OH)Tric. 1 : P1
9.DG.05TanohataiteLiMn2Si3O8(OH)Tric. 1 : P1
9.DG.05DalnegorskiteCa5Mn(Si3O9)2Tric. 1 : P1
9.DG.05Wollastonite-1ACaSiO3Tric. 1 : P1
9.DG.05WollastoniteCa3(Si3O9)Tric. 1 : P1
9.DG.05FerrobustamiteCaFe2+(Si2O6)Tric. 1
9.DG.05SchizoliteNaCaMnSi3O8(OH)Tric. 1 : P1
9.DG.07CascanditeCaScSi3O8(OH)Tric. 1
9.DG.08PlombièriteCa5Si6O16(OH)2 · 7H2OOrth.
9.DG.10ClinotobermoriteCa5Si6O17 · 5H2OMon.
9.DG.10RiversideiteCa5Si6O16(OH)2 · 2H2O Orth.
9.DG.10TobermoriteCa5Si6O17 · 5H2OMon. 2 : P21
9.DG.12JusiteNa2Ca15Al4Si16O54 · 17H2O
9.DG.12KenotobermoriteCa4Si6O15(OH)2 · 5H2OMon.
9.DG.15FoshagiteCa4(Si3O9)(OH)2Tric. 1 : P1
9.DG.20JenniteCa9(Si3O9)2(OH)8 · 8H2OTric. 1 : P1
9.DG.20KameneviteK2TiSi3O9 · H2OOrth. 2 2 2 : P21 21 21
9.DG.25UmbiteK2(Zr,Ti)Si3O9 · H2OOrth. 2 2 2 : P21 21 21
9.DG.30SørenseniteNa4SnBe2Si6O16(OH)4Mon. 2/m : B2/b
9.DG.32Escheite Ca2NaMnTi5[Si12O34]O2(OH)3 · 12H2OOrth. mm2 : Ama2
9.DG.35XonotliteCa6(Si6O17)(OH)2Mon. 2/m : B2/m
9.DG.40HillebranditeCa2(SiO3)(OH)2Orth. mmm (2/m 2/m 2/m) : Cmcm
9.DG.45ZoriteNa8(Ti,Nb)5(Si6O17)2(OH,O)5 · 14H2OOrth.
9.DG.45ChivruaiiteCa4(Ti,Nb)5(Si6O17)2(OH,O)5 · 13-14H2OOrth. mmm (2/m 2/m 2/m) : Cmmm
9.DG.50Haineaultite(Na,Ca)5Ca(Ti,Nb)5(Si6O17)2(OH,F)8 · 5H2OOrth. 2 2 2 : C2 2 2
9.DG.55EpididymiteNa2Be2Si6O15 · H2OOrth. mmm (2/m 2/m 2/m) : Pnma
9.DG.60EudidymiteNa2Be2Si6O15 · H2OMon. 2/m : B2/b
9.DG.65ElpiditeNa2ZrSi6O15 · 3H2OOrth.
9.DG.65PatyniteNaKCa4[Si9O23]Tric. 1 : P1
9.DG.67WhelaniteCu2+2Ca6[Si6O17(OH)](CO3)(OH)3 · 2H2OOrth. mm2 : Pnn2
9.DG.70EnricofrancoiteKNaCaSi4O10Tric. 1 : P1
9.DG.70YusupoviteNa2Zr(Si6O15) · 2.5H2OMon. 2/m : B2/m
9.DG.70LitidioniteKNaCuSi4O10Tric. 1 : P1
9.DG.70Fenaksite(K,Na)4(Fe,Mn)2(Si4O10)2(OH,F)Tric. 1 : P1
9.DG.70ManaksiteKNaMnSi4O10Tric. 1 : P1
9.DG.75SenkevichiteCsKNaCa2TiO[Si7O18](OH)Tric. 1 : P1
9.DG.75TinaksiteK2Na(Ca,Mn2+)2TiO[Si7O18(OH)]Tric.
9.DG.75TokkoiteK2Ca4[Si7O18(OH)](OH,F)Tric.
9.DG.80FluorcanasiteK3Na3Ca5Si12O30F4 · H2OMon. m : Bm
9.DG.80CanasiteK3Na3Ca5Si12O30(OH)4Mon. m : Bm
9.DG.85MiseriteK1.5-x(Ca,Y,REE)5(Si6O15)(Si2O7)(OH,F)2 · yH2OTric.
9.DG.90FrankameniteK3Na3Ca5(Si12O30)(F,OH)4 · H2OTric. 1 : P1
9.DG.92Charoite(K,Sr)15-16(Ca,Na)32[Si6O11(O,OH)6]2[Si12O18(O,OH)12]2[Si17O25(O,OH)18]2(OH,F)4 · ~3H2OMon. 2/m : P21/m
9.DG.95YuksporiteK4(Ca,Na)14(Sr,Ba)2(◻,Mn,Fe)(Ti,Nb)4(O,OH)4(Si6O17)2(Si2O7)3(H2O,OH)3Mon. 2/m : P21/m
9.DG.97Eveslogite(Na,K,Ca,Sr,Ba)48 [(Ti,Nb,Mn,Fe2+)12Si48O144(OH)12](F,OH,Cl)14Mon. 2/m : P2/m

RadioactivityHide

Radioactivity:
Element % Content Activity (Bq/kg) Radiation Type
Uranium (U) 0.0000% 0 α, β, γ
Thorium (Th) 0.0000% 0 α, β, γ
Potassium (K) 15.1296% 4,690 β, γ

For comparison:

  • Banana: ~15 Bq per fruit
  • Granite: 1,000–3,000 Bq/kg
  • EU exemption limit: 10,000 Bq/kg

Note: Risk is shown relative to daily recommended maximum exposure to non-background radiation of 1000 µSv/year. Note that natural background radiation averages around 2400 µSv/year so in reality these risks are probably extremely overstated! With infrequent handling and safe storage natural radioactive minerals do not usually pose much risk.

Interactive Simulator:

Note: The mass selector refers to the mass of radioactive mineral present, not the full specimen, also be aware that the matrix may also be radioactive, possibly more radioactive than this mineral!

Activity:

DistanceDose rateRisk
1 cm
10 cm
1 m

The external dose rate (D) from a radioactive mineral is estimated by summing the gamma radiation contributions from its Uranium, Thorium, and Potassium content, disregarding daughter-product which may have a significant effect in some cases (eg 'pitchblende'). This involves multiplying the activity (A, in Bq) of each element by its specific gamma ray constant (Γ), which accounts for its unique gamma emissions. The total unshielded dose at 1 cm is then scaled by the square of the distance (r, in cm) and multiplied by a shielding factor (μshield). This calculation provides a 'worst-case' or 'maximum risk' estimate because it assumes the sample is a point source and entirely neglects any self-shielding where radiation is absorbed within the mineral itself, meaning actual doses will typically be lower. The resulting dose rate (D) is expressed in microsieverts per hour (μSv/h).

D = ((AU × ΓU) + (ATh × ΓTh) + (AK × ΓK)) / r2 × μshield

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

Internet Links for ParaumbiteHide

References for ParaumbiteHide

Localities for ParaumbiteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for references and further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (e.g. from pseudomorphs).

All localities listed without proper references should be considered as questionable.
Canada
 
  • Québec
    • Montérégie
      • La Vallée-du-Richelieu RCM
        • Mont Saint-Hilaire
Grice (1989) +1 other reference
Russia (TL)
 
  • Murmansk Oblast
    • Khibiny Massif
[World of Stones 95:5-6 +2 other references
Pavel.M. Kartashov (n.d.) +1 other reference
PEKOV et al. (2013)
Anthony et al. (2000)
USA
 
  • Arkansas
    • Hot Spring County
TICE et al. (2000)
 
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: December 4, 2025 08:34:00 Page updated: August 12, 2025 12:20:52
Go to top of page