Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral QuizTime Machine
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Litidionite

A valid IMA mineral species - grandfathered
This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About LitidioniteHide

Formula:
KNaCuSi4O10
Hardness:
5 - 6
Specific Gravity:
2.75
Crystal System:
Triclinic
Name:
From the Greek for "pebble". Formerly called lithiodionite; renamed in 2014 (IMA 14-C) in agreement with its original spelling.
This page provides mineralogical data about Litidionite.


Unique IdentifiersHide

Mindat ID:
2422
Long-form identifier:
mindat:1:1:2422:4

IMA Classification of LitidioniteHide

Approved, 'Grandfathered' (first described prior to 1959)
First published:
1880

Classification of LitidioniteHide

9.DG.70

9 : SILICATES (Germanates)
D : Inosilicates
G : Inosilicates with 3-periodic single and multiple chains
70.1.1.1

70 : INOSILICATES Column or Tube Structures
1 : Column or Tube Structures with columnar silicate units
14.2.6

14 : Silicates not Containing Aluminum
2 : Silicates of Cu

Mineral SymbolsHide

As of 2021 there are now IMA–CNMNC approved mineral symbols (abbreviations) for each mineral species, useful for tables and diagrams.

SymbolSourceReference
LtdIMA–CNMNCWarr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. doi:10.1180/mgm.2021.43

Physical Properties of LitidioniteHide

Hardness:
5 - 6 on Mohs scale
Density:
2.75 g/cm3 (Measured)    2.85 g/cm3 (Calculated)

Optical Data of LitidioniteHide

Type:
Biaxial (-)
RI values:
nα = 1.548 nβ = 1.574
2V:
Measured: 56°
Max. Birefringence:
δ = 0.000
Based on recorded range of RI values above.

Interference Colours:
The colours simulate birefringence patterns seen in thin section under crossed polars. They do not take into account mineral colouration or opacity.

Michel-Levy Bar The default colours simulate the birefringence range for a 30 µm thin-section thickness. Adjust the slider to simulate a different thickness.

Grain Simulation You can rotate the grain simulation to show how this range might look as you rotated a sample under crossed polars.

Surface Relief:
Moderate
Dispersion:
none

Chemistry of LitidioniteHide

Mindat Formula:
KNaCuSi4O10
Element Weights:
Element% weight
O40.203 %
Si28.229 %
Cu15.968 %
K9.824 %
Na5.777 %

Calculated from ideal end-member formula.
Common Impurities:
Fe,Pb,Ca

Crystallography of LitidioniteHide

Crystal System:
Triclinic
Class (H-M):
1 - Pinacoidal
Space Group:
P1
Cell Parameters:
a = 9.80(1) Å, b = 8.01(1) Å, c = 6.97(1) Å
α = 114.12(8)°, β = 99.52(6)°, γ = 105.59(8)°
Ratio:
a:b:c = 1.223 : 1 : 0.87
Unit Cell V:
456.81 ų (Calculated from Unit Cell)
Z:
2

Crystal StructureHide

Load
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Show
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
View
CIF File    Best | x | y | z | a | b | c
Rotation
Stop | Start
Labels
Console Off | On | Grey | Yellow
IDSpeciesReferenceLinkYearLocalityPressure (GPa)Temp (K)
0000464LitidionitePozas J M M, Rossi G, Tazzoli V (1975) Re-examination and crystal structure analysis of litidionite American Mineralogist 60 471-47419750293
0019812LitidioniteBrandao P, Rocha J, Reis M S, dos Santos A M, Jin R (2009) Magnetic properties of KNaMSi4O10 compounds (M=Mn,Fe,Cu) Journal of Solid State Chemistry 182 253-2582009synthetic0293
CIF Raw Data - click here to close

X-Ray Powder DiffractionHide

Powder Diffraction Data:
d-spacingIntensity
6.75 Å(35)
3.652 Å(18)
3.372 Å(100)
3.223 Å(75)
2.675 Å(37)
2.409 Å(85)

Type Occurrence of LitidioniteHide

General Appearance of Type Material:
Very tiny blue plates.
Place of Conservation of Type Material:
Natural History Museum, Paris, France, 99.788.
Geological Setting of Type Material:
In lapilli modified by fumarolic activity.
Associated Minerals at Type Locality:

Synonyms of LitidioniteHide

Other Language Names for LitidioniteHide

Relationship of Litidionite to other SpeciesHide

Other Members of Litidionite Group:
CalcinaksiteKNaCa(Si4O10) · H2OTric. 1 : P1
EnricofrancoiteKNaCaSi4O10Tric. 1 : P1
Fenaksite(K,Na)4(Fe,Mn)2(Si4O10)2(OH,F)Tric. 1 : P1
ManaksiteKNaMnSi4O10Tric. 1 : P1

Common AssociatesHide

Associated Minerals Based on Photo Data:
1 photo of Litidionite associated with TridymiteSiO2

Related Minerals - Strunz-mindat GroupingHide

9.DG.Barrydawsonite-(Y)Na1.5Y0.5CaSi3O8(OH)Mon. 2/m : P21/b
9.DG.ParatobermoriteCa5AlSi5O16(OH) · 5H2OMon. 2/m
9.DG.CalcinaksiteKNaCa(Si4O10) · H2OTric. 1 : P1
9.DG.AlvesiteNaKZrSi6O15 · 2H2OOrth. mmm (2/m 2/m 2/m)
9.DG.02SteedeiteNaMn2[Si3BO9](OH)2Tric. 1 : P1
9.DG.02NolzeiteNaMn2[Si3BO9](OH)2 · 2H2OTric. 1 : P1
9.DG.05MurakamiiteLiCa2Si3O8(OH)Tric. 1 : P1
9.DG.05SeranditeNaMn2+2Si3O8(OH)Tric. 1 : P1
9.DG.05BustamiteCaMn2+(Si2O6)Tric. 1 : P1
9.DG.05PectoliteNaCa2Si3O8(OH)Tric. 1 : P1
9.DG.05TanohataiteLiMn2Si3O8(OH)Tric. 1 : P1
9.DG.05DalnegorskiteCa5Mn(Si3O9)2Tric. 1 : P1
9.DG.05Wollastonite-1ACaSiO3Tric. 1 : P1
9.DG.05WollastoniteCa3(Si3O9)Tric. 1 : P1
9.DG.05FerrobustamiteCaFe2+(Si2O6)Tric. 1
9.DG.05SchizoliteNaCaMnSi3O8(OH)Tric. 1 : P1
9.DG.07CascanditeCaScSi3O8(OH)Tric. 1
9.DG.08PlombièriteCa5Si6O16(OH)2 · 7H2OOrth.
9.DG.10ClinotobermoriteCa5Si6O17 · 5H2OMon.
9.DG.10RiversideiteCa5Si6O16(OH)2 · 2H2O Orth.
9.DG.10TobermoriteCa5Si6O17 · 5H2OMon. 2 : P21
9.DG.12JusiteNa2Ca15Al4Si16O54 · 17H2O
9.DG.12KenotobermoriteCa4Si6O15(OH)2 · 5H2OMon.
9.DG.15FoshagiteCa4(Si3O9)(OH)2Tric. 1 : P1
9.DG.20JenniteCa9(Si3O9)2(OH)8 · 8H2OTric. 1 : P1
9.DG.20KameneviteK2TiSi3O9 · H2OOrth. 2 2 2 : P21 21 21
9.DG.25ParaumbiteK3Zr2H(Si3O9)2 · nH2OOrth. mm2
9.DG.25UmbiteK2(Zr,Ti)Si3O9 · H2OOrth. 2 2 2 : P21 21 21
9.DG.30SørenseniteNa4SnBe2Si6O16(OH)4Mon. 2/m : B2/b
9.DG.32Escheite Ca2NaMnTi5[Si12O34]O2(OH)3 · 12H2OOrth. mm2 : Ama2
9.DG.35XonotliteCa6(Si6O17)(OH)2Mon. 2/m : B2/m
9.DG.40HillebranditeCa2(SiO3)(OH)2Orth. mmm (2/m 2/m 2/m) : Cmcm
9.DG.45ZoriteNa8(Ti,Nb)5(Si6O17)2(OH,O)5 · 14H2OOrth.
9.DG.45ChivruaiiteCa4(Ti,Nb)5(Si6O17)2(OH,O)5 · 13-14H2OOrth. mmm (2/m 2/m 2/m) : Cmmm
9.DG.50Haineaultite(Na,Ca)5Ca(Ti,Nb)5(Si6O17)2(OH,F)8 · 5H2OOrth. 2 2 2 : C2 2 2
9.DG.55EpididymiteNa2Be2Si6O15 · H2OOrth. mmm (2/m 2/m 2/m) : Pnma
9.DG.60EudidymiteNa2Be2Si6O15 · H2OMon. 2/m : B2/b
9.DG.65ElpiditeNa2ZrSi6O15 · 3H2OOrth.
9.DG.65PatyniteNaKCa4[Si9O23]Tric. 1 : P1
9.DG.67WhelaniteCu2+2Ca6[Si6O17(OH)](CO3)(OH)3 · 2H2OOrth. mm2 : Pnn2
9.DG.70EnricofrancoiteKNaCaSi4O10Tric. 1 : P1
9.DG.70YusupoviteNa2Zr(Si6O15) · 2.5H2OMon. 2/m : B2/m
9.DG.70Fenaksite(K,Na)4(Fe,Mn)2(Si4O10)2(OH,F)Tric. 1 : P1
9.DG.70ManaksiteKNaMnSi4O10Tric. 1 : P1
9.DG.75SenkevichiteCsKNaCa2TiO[Si7O18](OH)Tric. 1 : P1
9.DG.75TinaksiteK2Na(Ca,Mn2+)2TiO[Si7O18(OH)]Tric.
9.DG.75TokkoiteK2Ca4[Si7O18(OH)](OH,F)Tric.
9.DG.80FluorcanasiteK3Na3Ca5Si12O30F4 · H2OMon. m : Bm
9.DG.80CanasiteK3Na3Ca5Si12O30(OH)4Mon. m : Bm
9.DG.85MiseriteK1.5-x(Ca,Y,REE)5(Si6O15)(Si2O7)(OH,F)2 · yH2OTric.
9.DG.90FrankameniteK3Na3Ca5(Si12O30)(F,OH)4 · H2OTric. 1 : P1
9.DG.92Charoite(K,Sr)15-16(Ca,Na)32[Si6O11(O,OH)6]2[Si12O18(O,OH)12]2[Si17O25(O,OH)18]2(OH,F)4 · ~3H2OMon. 2/m : P21/m
9.DG.95YuksporiteK4(Ca,Na)14(Sr,Ba)2(◻,Mn,Fe)(Ti,Nb)4(O,OH)4(Si6O17)2(Si2O7)3(H2O,OH)3Mon. 2/m : P21/m
9.DG.97Eveslogite(Na,K,Ca,Sr,Ba)48 [(Ti,Nb,Mn,Fe2+)12Si48O144(OH)12](F,OH,Cl)14Mon. 2/m : P2/m

RadioactivityHide

Radioactivity:
Element % Content Activity (Bq/kg) Radiation Type
Uranium (U) 0.0000% 0 α, β, γ
Thorium (Th) 0.0000% 0 α, β, γ
Potassium (K) 9.8244% 3,046 β, γ

For comparison:

  • Banana: ~15 Bq per fruit
  • Granite: 1,000–3,000 Bq/kg
  • EU exemption limit: 10,000 Bq/kg

Note: Risk is shown relative to daily recommended maximum exposure to non-background radiation of 1000 µSv/year. Note that natural background radiation averages around 2400 µSv/year so in reality these risks are probably extremely overstated! With infrequent handling and safe storage natural radioactive minerals do not usually pose much risk.

Interactive Simulator:

Note: The mass selector refers to the mass of radioactive mineral present, not the full specimen, also be aware that the matrix may also be radioactive, possibly more radioactive than this mineral!

Activity:

DistanceDose rateRisk
1 cm
10 cm
1 m

The external dose rate (D) from a radioactive mineral is estimated by summing the gamma radiation contributions from its Uranium, Thorium, and Potassium content, disregarding daughter-product which may have a significant effect in some cases (eg 'pitchblende'). This involves multiplying the activity (A, in Bq) of each element by its specific gamma ray constant (Γ), which accounts for its unique gamma emissions. The total unshielded dose at 1 cm is then scaled by the square of the distance (r, in cm) and multiplied by a shielding factor (μshield). This calculation provides a 'worst-case' or 'maximum risk' estimate because it assumes the sample is a point source and entirely neglects any self-shielding where radiation is absorbed within the mineral itself, meaning actual doses will typically be lower. The resulting dose rate (D) is expressed in microsieverts per hour (μSv/h).

D = ((AU × ΓU) + (ATh × ΓTh) + (AK × ΓK)) / r2 × μshield

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

Internet Links for LitidioniteHide

References for LitidioniteHide

Localities for LitidioniteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for references and further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (e.g. from pseudomorphs).

All localities listed without proper references should be considered as questionable.
Italy (TL)
 
  • Campania
    • Metropolitan City of Naples
Pozas et al. (1975) +1 other reference
Russo et al. (2004)
Russia
 
  • Kamchatka Krai
    • Milkovsky District
      • Tolbachik Volcanic field
        • Great Fissure eruption (Main Fracture)
          • Northern Breakthrough (North Breach)
            • Second scoria cone
Sidorov (2019) +1 other reference
USA
 
  • Nevada
    • Lander County
      • North Battle Mountain Mining District
        • Snowstorm mine (Mountain View mine)
Castor et al. (2004)
 
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: December 4, 2025 07:36:46 Page updated: September 12, 2025 02:41:16
Go to top of page