Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review article
  • Published:

Death by TNF: a road to inflammation

Abstract

Tumour necrosis factor (TNF) is a central cytokine in inflammatory reactions, and biologics that neutralize TNF are among the most successful drugs for the treatment of chronic inflammatory and autoimmune pathologies. In recent years, it became clear that TNF drives inflammatory responses not only directly by inducing inflammatory gene expression but also indirectly by inducing cell death, instigating inflammatory immune reactions and disease development. Hence, inhibitors of cell death are being considered as a new therapy for TNF-dependent inflammatory diseases.

Access to this article via ICE Institution of Civil Engineers is not available.

This is a preview of subscription content, access via your institution

Access options

Access to this article via ICE Institution of Civil Engineers is not available.

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of key events in the history of TNF and TNF-induced cell death.
Fig. 2: Inflammatory signalling by TNFR1.
Fig. 3: Signalling by TNFR1 and overview of the three characterized cell death checkpoints in the TNFR1 pathway.

Similar content being viewed by others

References

  1. Anderton, H., Wicks, I. P. & Silke, J. Cell death in chronic inflammation: breaking the cycle to treat rheumatic disease. Nat. Rev. Rheumatol. 16, 496–513 (2020).

    Article  PubMed  Google Scholar 

  2. Carswell, E. A. et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl Acad. Sci. USA 72, 3666–3670 (1975). TNF is identified as a serum factor that could induce necrosis of tumours in patients following acute bacterial infections. The necrotizing factor was named ‘tumour necrosis factor’ or ‘TNF’.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Coley, W. B. The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. Am. J. Med. Sci. 105, 487–511 (1893).

    Article  Google Scholar 

  4. Coley, W. B. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc. R. Soc. Med. 3, 1–48 (1910).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Shear, M. J. & Perrault, A. Chemical treatment of tumors. IX. Reactions of mice with primary subcutaneous tumors to injection of a hemorrhage-producing bacterial polysaccharide. J. Natl Cancer Inst. 44, 461–476 (1944).

    Google Scholar 

  6. Pennica, D. et al. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 312, 724–729 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Marmenout, A. et al. Molecular cloning and expression of human tumor necrosis factor and comparison with mouse tumor necrosis factor. Eur. J. Biochem. 152, 515–522 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. Fransen, L. et al. Molecular cloning of mouse tumour necrosis factor cDNA and its eukaryotic expression. Nucleic Acids Res. 13, 4417–4429 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aggarwal, B. B., Eessalu, T. E. & Hass, P. E. Characterization of receptors for human tumour necrosis factor and their regulation by gamma-interferon. Nature 318, 665–667 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Loetscher, H. et al. Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell 61, 351–359 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Schall, T. J. et al. Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell 61, 361–370 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Smith, C. A. et al. A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 248, 1019–1023 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Heller, R. A. et al. Complementary DNA cloning of a receptor for tumor necrosis factor and demonstration of a shed form of the receptor. Proc. Natl Acad. Sci. USA 87, 6151–6155 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer 9, 361–371 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Beutler, B. et al. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 316, 552–554 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. Martens, S., Hofmans, S., Declercq, W., Augustyns, K. & Vandenabeele, P. Inhibitors targeting RIPK1/RIPK3: old and new drugs. Trends Pharmacol. Sci. 41, 209–224 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Mifflin, L., Ofengeim, D. & Yuan, J. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nat. Rev. Drug Discov. 19, 553–571 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ting, A. T. & Bertrand, M. J. M. More to life than NF-kappaB in TNFR1 signaling. Trends Immunol. 37, 535–545 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Delanghe, T., Dondelinger, Y. & Bertrand, M. J. M. RIPK1 kinase-dependent death: a symphony of phosphorylation events. Trends Cell Biol. 30, 189–200 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Lork, M., Verhelst, K. & Beyaert, R. CYLD, A20 and OTULIN deubiquitinases in NF-kappaB signaling and cell death: so similar, yet so different. Cell Death Differ. 24, 1172–1183 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190 (2003). This is the first study reporting that, in contrast to other death receptor of the TNFR family, TNFR1-mediated cell death relies on the assembly of a cytosolic, receptor-dissociated, caspase 8-activating complex (complex II) that originates from the membrane-bound receptor signalling complex (complex I).

    Article  CAS  PubMed  Google Scholar 

  22. Orning, P. et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 362, 1064–1069 (2018). This study demonstrates that inhibition of TAK1 by the Yersinia effector YopJ causes RIPK1-dependent caspase 8-mediated cleavage of GSDMD and pyroptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Demarco, B. et al. Caspase-8-dependent gasdermin D cleavage promotes antimicrobial defense but confers susceptibility to TNF-induced lethality. Sci. Adv. 6, eabc3465 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schwarzer, R., Jiao, H., Wachsmuth, L., Tresch, A. & Pasparakis, M. FADD and caspase-8 regulate gut homeostasis and inflammation by controlling MLKL- and GSDMD-mediated death of intestinal epithelial cells. Immunity 52, 978–993 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, L., Du, F. & Wang, X. TNF-alpha induces two distinct caspase-8 activation pathways. Cell 133, 693–703 (2008). This study demonstrates that cIAP1/cIAP2-mediated ubiquitylation controls the yet-to-be-discovered IKK checkpoint independently of NF-κB. It reveals the existence of TNFR1 complex IIa and complex IIb.

    Article  CAS  PubMed  Google Scholar 

  26. Wilson, N. S., Dixit, V. & Ashkenazi, A. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat. Immunol. 10, 348–355 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Dondelinger, Y. et al. NF-kappaB-independent role of IKKalpha/IKKbeta in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol. Cell 60, 63–76 (2015). This is the first study describing the IKK checkpoint, demonstrating that the IKK complex phosphorylates RIPK1 to prevent TNF-induced RIPK1 kinase activity-dependent cell death, independent of its function in NF-κB activation.

    Article  CAS  PubMed  Google Scholar 

  28. Lafont, E. et al. TBK1 and IKKepsilon prevent TNF-induced cell death by RIPK1 phosphorylation. Nat. Cell Biol. 20, 1389–1399 (2018). This study demonstrates that TBK1 and IKKε phosphorylate RIPK1 to prevent TNF-induced RIPK1 kinase activity-dependent cell death.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu, D. et al. TBK1 suppresses RIPK1-driven apoptosis and inflammation during development and in aging. Cell 174, 1477–1491 (2018). This study demonstrates that TBK1 phosphorylates RIPK1 to prevent TNF-induced RIPK1 kinase activity-dependent cell death, and shows that inhibition of RIPK1 kinase activity rescues embryonic lethality of Tbk1-knockout mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Du, J. et al. RIPK1 dephosphorylation and kinase activation by PPP1R3G/PP1gamma promote apoptosis and necroptosis. Nat. Commun. 12, 7067 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dondelinger, Y. et al. Serine 25 phosphorylation inhibits RIPK1 kinase-dependent cell death in models of infection and inflammation. Nat. Commun. 10, 1729 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Van Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R. & Verma, I. M. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 274, 787–789 (1996). This study provides the first description of the NF-κB-dependent checkpoint, demonstrating that TNF-induced NF-κB activation suppresses cell death.

    Article  PubMed  Google Scholar 

  33. Bertrand, M. J. et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689–700 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Vince, J. E. et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131, 682–693 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Moulin, M. et al. IAPs limit activation of RIP kinases by TNF receptor 1 during development. EMBO J. 31, 1679–1691 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mahoney, D. J. et al. Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc. Natl Acad. Sci. USA 105, 11778–11783 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Taraborrelli, L. et al. LUBAC prevents lethal dermatitis by inhibiting cell death induced by TNF, TRAIL and CD95L. Nat. Commun. 9, 3910 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Peltzer, N. et al. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature 557, 112–117 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rickard, J. A. et al. TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice. Elife 3, e03464 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Peltzer, N. et al. HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death. Cell Rep. 9, 153–165 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. O’Donnell, M. A., Legarda-Addison, D., Skountzos, P., Yeh, W. C. & Ting, A. T. Ubiquitination of RIP1 regulates an NF-kappaB-independent cell-death switch in TNF signaling. Curr. Biol. 17, 418–424 (2007). This study provides the first description of an NF-κB-independent checkpoint, demonstrating that ubiquitylation of RIPK1 on lysine 377 inhibits TNF-induced apoptosis.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhang, X. et al. Ubiquitination of RIPK1 suppresses programmed cell death by regulating RIPK1 kinase activation during embryogenesis. Nat. Commun. 10, 4158 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tang, Y. et al. K63-linked ubiquitination regulates RIPK1 kinase activity to prevent cell death during embryogenesis and inflammation. Nat. Commun. 10, 4157 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Draber, P. et al. LUBAC-recruited CYLD and A20 regulate gene activation and cell death by exerting opposing effects on linear ubiquitin in signaling complexes. Cell Rep. 13, 2258–2272 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Priem, D. et al. A20 protects cells from TNF-induced apoptosis through linear ubiquitin-dependent and -independent mechanisms. Cell Death Dis. 10, 692 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wertz, I. E. et al. Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation. Nature 528, 370–375 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Polykratis, A. et al. A20 prevents inflammasome-dependent arthritis by inhibiting macrophage necroptosis through its ZnF7 ubiquitin-binding domain. Nat. Cell Biol. 21, 731–742 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Martens, A. et al. Two distinct ubiquitin-binding motifs in A20 mediate its anti-inflammatory and cell-protective activities. Nat. Immunol. 21, 381–387 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Heger, K. et al. OTULIN limits cell death and inflammation by deubiquitinating LUBAC. Nature 559, 120–124 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Lin, Y., Devin, A., Rodriguez, Y. & Liu, Z. G. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13, 2514–2526 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Newton, K. et al. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature 574, 428–431 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Lalaoui, N. et al. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature 577, 103–108 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Tao, P. et al. A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1. Nature 577, 109–114 (2020). Lalaoui et al. (2020) and Tao et al. (2020) are the first reports of patients with autoinflammatory disease caused by mutation in RIPK1 specifically inactivating the caspase 8 checkpoint.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, X., Dowling, J. P. & Zhang, J. RIPK1 can mediate apoptosis in addition to necroptosis during embryonic development. Cell Death Dis. 10, 245 (2019). Newton et al. (2019) Lalaoui et al. (2020), Tao et al. (2020) and Zhang et al. (Cell Death Dis., 2019) provide an in vivo demonstration that the caspase 8 checkpoint consists of cleavage of RIPK1 by caspase 8, and protects against inflammatory disease caused by RIPK1 kinase activity-dependent cell death.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dondelinger, Y. et al. MK2 phosphorylation of RIPK1 regulates TNF-mediated cell death. Nat. Cell Biol. 19, 1237–1247 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Menon, M. B. et al. p38(MAPK)/MK2-dependent phosphorylation controls cytotoxic RIPK1 signalling in inflammation and infection. Nat. Cell Biol. 19, 1248–1259 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Jaco, I. et al. MK2 phosphorylates RIPK1 to prevent TNF-induced cell death. Mol. Cell 66, 698–710 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu, W. et al. The autophagy-initiating kinase ULK1 controls RIPK1-mediated cell death. Cell Rep. 31, 107547 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Liu, L. et al. Tankyrase-mediated ADP-ribosylation is a regulator of TNF-induced death. Sci. Adv. 8, eabh2332 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mukherjee, S. et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312, 1211–1214 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Mittal, R., Peak-Chew, S. Y. & McMahon, H. T. Acetylation of MEK2 and I kappa B kinase (IKK) activation loop residues by YopJ inhibits signaling. Proc. Natl Acad. Sci. USA 103, 18574–18579 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Haase, R., Richter, K., Pfaffinger, G., Courtois, G. & Ruckdeschel, K. Yersinia outer protein P suppresses TGF-beta-activated kinase-1 activity to impair innate immune signaling in Yersinia enterocolitica-infected cells. J. Immunol. 175, 8209–8217 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Paquette, N. et al. Serine/threonine acetylation of TGFbeta-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling. Proc. Natl Acad. Sci. USA 109, 12710–12715 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Peterson, L. W. et al. RIPK1-dependent apoptosis bypasses pathogen blockade of innate signaling to promote immune defense. J. Exp. Med. 214, 3171–3182 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Peterson, L. W. et al. Cell-extrinsic TNF collaborates with TRIF signaling to promote yersinia-induced apoptosis. J. Immunol. 197, 4110–4117 (2016). Peterson et al. (2017) and Peterson et al. (2016) demonstrate that RIPK1 kinase activity-dependent cell death serves as a backup mechanism to promote immune defence against pathogens that have highjacked innate signalling.

    Article  CAS  PubMed  Google Scholar 

  66. Sarhan, J. et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc. Natl Acad. Sci. USA 115, 10888–10897 (2018).

    Article  Google Scholar 

  67. Tummers, B. & Green, D. R. The evolution of regulated cell death pathways in animals and their evasion by pathogens. Physiol. Rev. 102, 411–454 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhou, Q. et al. Target protease specificity of the viral serpin CrmA. Analysis of five caspases. J. Biol. Chem. 272, 7797–7800 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Thome, M. et al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386, 517–521 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Bertin, J. et al. Death effector domain-containing herpesvirus and poxvirus proteins inhibit both Fas- and TNFR1-induced apoptosis. Proc. Natl Acad. Sci. USA 94, 1172–1176 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Karki, R. et al. Synergism of TNF-alpha and IFN-gamma triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 184, 149–168 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Roca, F. J., Whitworth, L. J., Redmond, S., Jones, A. A. & Ramakrishnan, L. TNF induces pathogenic programmed macrophage necrosis in tuberculosis through a mitochondrial-lysosomal-endoplasmic reticulum circuit. Cell 178, 1344–1361 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Van Hauwermeiren, F. et al. Bacillus anthracis induces NLRP3 inflammasome activation and caspase-8-mediated apoptosis of macrophages to promote lethal anthrax. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2116415119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Simpson, D. S. et al. Interferon-gamma primes macrophages for pathogen ligand-induced killing via a caspase-8 and mitochondrial cell death pathway. Immunity 55, 423–441 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Duprez, L. et al. RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35, 908–918 (2011). This study provides the first demonstration that RIPK1 kinase activity-dependent cell death drives the inflammatory lethal shock caused by TNF injection in mice.

    Article  CAS  PubMed  Google Scholar 

  76. Newton, K. et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343, 1357–1360 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Berger, S. B. et al. Cutting edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J. Immunol. 192, 5476–5480 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Newton, K. et al. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ. 23, 1565–1576 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Varfolomeev, E. et al. Cellular inhibitors of apoptosis are global regulators of NF-kappaB and MAPK activation by members of the TNF family of receptors. Sci. Signal. 5, ra22 (2012).

    Article  PubMed  Google Scholar 

  80. Vince, J. E. et al. TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1-TRAF2 complex to sensitize tumor cells to TNFalpha. J. Cell Biol. 182, 171–184 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Croft, M. & Siegel, R. M. Beyond TNF: TNF superfamily cytokines as targets for the treatment of rheumatic diseases. Nat. Rev. Rheumatol. 13, 217–233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kawashima, R. et al. Interleukin-13 damages intestinal mucosa via TWEAK and Fn14 in mice-a pathway associated with ulcerative colitis. Gastroenterology 141, 2119–2129 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Lucas, C. et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 584, 463–469 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rodrigues, T. S. et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J. Exp. Med. 218, e20201707 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Ferreira, A. C. et al. SARS-CoV-2 engages inflammasome and pyroptosis in human primary monocytes. Cell Death Discov. 7, 43 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Varfolomeev, E. E. et al. Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9, 267–276 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, J., Cado, D., Chen, A., Kabra, N. H. & Winoto, A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392, 296–300 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Kaiser, W. J. et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471, 368–372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Oberst, A. et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471, 363–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, H. et al. Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471, 373–376 (2011). Kaiser et al. (2011), Oberst et al. (2011) and Zhang et al. (2011) provide the first in vivo evidence of the caspase 8 checkpoint, demonstrating that caspase 8 is essential to prevent RIPK3-dependent necroptosis during embryonic development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Alvarez-Diaz, S. et al. The pseudokinase MLKL and the kinase RIPK3 have distinct roles in autoimmune disease caused by loss of death-receptor-induced apoptosis. Immunity 45, 513–526 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Welz, P. S. et al. FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477, 330–334 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Gunther, C. et al. Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature 477, 335–339 (2011). Welz et al. (2011) and Gunther et al. (2011) provide the first in vivo evidence of the caspase 8 checkpoint, demonstrating that caspase 8 is essential to prevent RIPK3-dependent IEC necroptosis and intestinal inflammation.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Weinlich, R. et al. Protective roles for caspase-8 and cFLIP in adult homeostasis. Cell Rep. 5, 340–348 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Lehle, A. S. et al. Intestinal inflammation and dysregulated immunity in patients with inherited caspase-8 deficiency. Gastroenterology 156, 275–278 (2019).

    Article  PubMed  Google Scholar 

  96. Chun, H. J. et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419, 395–399 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Bader, S. M. et al. Endothelial caspase-8 prevents fatal necroptotic hemorrhage caused by commensal bacteria. Cell Death Differ. https://doi.org/10.1038/s41418-022-01042-8 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kovalenko, A. et al. Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease. J. Exp. Med. 206, 2161–2177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bonnet, M. C. et al. The adaptor protein FADD protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation. Immunity 35, 572–582 (2011). This study provides the first in vivo evidence of the caspase 8 checkpoint, demonstrating that caspase 8 is essential to prevent RIPK3-dependent keratinocyte necroptosis and skin inflammation.

    Article  CAS  PubMed  Google Scholar 

  100. Dondelinger, Y. et al. RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell Death Differ. 20, 1381–1392 (2013). This article shows that RIPK1 kinase activity is not restricted to necroptosis but also drives apoptosis downstream of TNFR1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dannappel, M. et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513, 90–94 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Devos, M. et al. Sensing of endogenous nucleic acids by ZBP1 induces keratinocyte necroptosis and skin inflammation. J. Exp. Med. 217, e20191913 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tapiz, I. R. A. J. et al. Characterization of novel pathogenic variants leading to caspase-8 cleavage-resistant RIPK1-induced autoinflammatory syndrome. J. Clin. Immunol. https://doi.org/10.1007/s10875-022-01298-2 (2022).

    Article  Google Scholar 

  104. Kupka, S., Reichert, M., Draber, P. & Walczak, H. Formation and removal of poly-ubiquitin chains in the regulation of tumor necrosis factor-induced gene activation and cell death. FEBS J. 283, 2626–2639 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Beck, D. B., Werner, A., Kastner, D. L. & Aksentijevich, I. Disorders of ubiquitylation: unchained inflammation. Nat. Rev. Rheumatol. 18, 435–447 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang, J. et al. Ubiquitin ligases cIAP1 and cIAP2 limit cell death to prevent inflammation. Cell Rep. 27, 2679–2689 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Rigaud, S. et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 444, 110–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Yabal, M. et al. XIAP restricts TNF- and RIP3-dependent cell death and inflammasome activation. Cell Rep. 7, 1796–1808 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Wahida, A. et al. XIAP restrains TNF-driven intestinal inflammation and dysbiosis by promoting innate immune responses of Paneth and dendritic cells. Sci. Immunol. 6, eabf7235 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Lawlor, K. E. et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat. Commun. 6, 6282 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. HogenEsch, H. et al. A spontaneous mutation characterized by chronic proliferative dermatitis in C57BL mice. Am. J. Pathol. 143, 972–982 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Tokunaga, F. et al. SHARPIN is a component of the NF-kappaB-activating linear ubiquitin chain assembly complex. Nature 471, 633–636 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-kappaB activity and apoptosis. Nature 471, 637–641 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kumari, S. et al. Sharpin prevents skin inflammation by inhibiting TNFR1-induced keratinocyte apoptosis. Elife 3, e03422 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Sharma, B. R. et al. Innate immune adaptor MyD88 deficiency prevents skin inflammation in SHARPIN-deficient mice. Cell Death Differ. 26, 741–750 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Hoste, E. et al. OTULIN maintains skin homeostasis by controlling keratinocyte death and stem cell identity. Nat. Commun. 12, 5913 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schunke, H., Gobel, U., Dikic, I. & Pasparakis, M. OTULIN inhibits RIPK1-mediated keratinocyte necroptosis to prevent skin inflammation in mice. Nat. Commun. 12, 5912 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Boisson, B. et al. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J. Exp. Med. 212, 939–951 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Boisson, B. et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat. Immunol. 13, 1178–1186 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Oda, H. et al. Second case of HOIP deficiency expands clinical features and defines inflammatory transcriptome regulated by LUBAC. Front. Immunol. 10, 479 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Damgaard, R. B. et al. The deubiquitinase OTULIN is an essential negative regulator of inflammation and autoimmunity. Cell 166, 1215–1230 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Damgaard, R. B. et al. OTULIN deficiency in ORAS causes cell type-specific LUBAC degradation, dysregulated TNF signalling and cell death. EMBO Mol. Med. 11, e9324 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Zhou, Q. et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc. Natl Acad. Sci. USA 113, 10127–10132 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nabavi, M. et al. Auto-inflammation in a patient with a novel homozygous OTULIN mutation. J. Clin. Immunol. 39, 138–141 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Zinngrebe, J. et al. Compound heterozygous variants in OTULIN are associated with fulminant atypical late-onset ORAS. EMBO Mol. Med. 14, e14901 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lee, E. G. et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Vereecke, L. et al. Enterocyte-specific A20 deficiency sensitizes to tumor necrosis factor-induced toxicity and experimental colitis. J. Exp. Med. 207, 1513–1523 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Vereecke, L. et al. A20 controls intestinal homeostasis through cell-specific activities. Nat. Commun. 5, 5103 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Catrysse, L. et al. A20 prevents chronic liver inflammation and cancer by protecting hepatocytes from death. Cell Death Dis. 7, e2250 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kattah, M. G. et al. A20 and ABIN-1 synergistically preserve intestinal epithelial cell survival. J. Exp. Med. 215, 1839–1852 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Slowicka, K. et al. Physical and functional interaction between A20 and ATG16L1-WD40 domain in the control of intestinal homeostasis. Nat. Commun. 10, 1834 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Vetters, J. et al. The ubiquitin-editing enzyme A20 controls NK cell homeostasis through regulation of mTOR activity and TNF. J. Exp. Med. 216, 2010–2023 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Razani, B. et al. Non-catalytic ubiquitin binding by A20 prevents psoriatic arthritis-like disease and inflammation. Nat. Immunol. 21, 422–433 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Martens, A. & van Loo, G. A20 at the crossroads of cell death, inflammation, and autoimmunity. Cold Spring Harb. Perspect. Biol. 12, a036418 (2019).

    Article  Google Scholar 

  136. Priem, D., van Loo, G. & Bertrand, M. J. M. A20 and cell death-driven inflammation. Trends Immunol. 41, 421–435 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Aeschlimann, F. A. et al. A20 haploinsufficiency (HA20): clinical phenotypes and disease course of patients with a newly recognised NF-kB-mediated autoinflammatory disease. Ann. Rheum. Dis. 77, 728–735 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Zhou, Q. et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat. Genet. 48, 67–73 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Zilberman-Rudenko, J. et al. Recruitment of A20 by the C-terminal domain of NEMO suppresses NF-kappaB activation and autoinflammatory disease. Proc. Natl Acad. Sci. USA 113, 1612–1617 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Li, Z. W. et al. The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J. Exp. Med. 189, 1839–1845 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Li, Q., Estepa, G., Memet, S., Israel, A. & Verma, I. M. Complete lack of NF-kappaB activity in IKK1 and IKK2 double-deficient mice: additional defect in neurulation. Genes Dev. 14, 1729–1733 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rudolph, D. et al. Severe liver degeneration and lack of NF-kappaB activation in NEMO/IKKgamma-deficient mice. Genes Dev. 14, 854–862 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Takeda, K. et al. Limb and skin abnormalities in mice lacking IKKalpha. Science 284, 313–316 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. Makris, C. et al. Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol. Cell 5, 969–979 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Schmidt-Supprian, M. et al. NEMO/IKK gamma-deficient mice model incontinentia pigmenti. Mol. Cell 5, 981–992 (2000).

    Article  CAS  PubMed  Google Scholar 

  146. Nenci, A. et al. Skin lesion development in a mouse model of incontinentia pigmenti is triggered by NEMO deficiency in epidermal keratinocytes and requires TNF signaling. Hum. Mol. Genet. 15, 531–542 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Smahi, A. et al. Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature 405, 466–472 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Lee, Y. et al. Genetically programmed alternative splicing of NEMO mediates an autoinflammatory disease phenotype. J. Clin. Invest. 132, e128808 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. de Jesus, A. A. et al. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J. Clin. Invest. 130, 1669–1682 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Pasparakis, M. et al. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 417, 861–866 (2002).

    Article  CAS  PubMed  Google Scholar 

  151. Kumari, S. et al. NF-kappaB inhibition in keratinocytes causes RIPK1-mediated necroptosis and skin inflammation. Life Sci. Alliance 4, e202000956 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Badran, Y. R. et al. Human RELA haploinsufficiency results in autosomal-dominant chronic mucocutaneous ulceration. J. Exp. Med. 214, 1937–1947 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Nenci, A. et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446, 557–561 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Vlantis, K. et al. NEMO prevents RIP kinase 1-mediated epithelial cell death and chronic intestinal inflammation by NF-kappaB-dependent and -independent functions. Immunity 44, 553–567 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bonnard, M. et al. Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-kappaB-dependent gene transcription. EMBO J. 19, 4976–4985 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Marchlik, E. et al. Mice lacking Tbk1 activity exhibit immune cell infiltrates in multiple tissues and increased susceptibility to LPS-induced lethality. J. Leukoc. Biol. 88, 1171–1180 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Taft, J. et al. Human TBK1 deficiency leads to autoinflammation driven by TNF-induced cell death. Cell 184, 4447–4463 (2021). This study describes patients with TBK1 deficiency (affecting the IKK checkpoint) developing autoinflammation caused by TNF-induced cell death.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Yeh, W. C. et al. Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 12, 633–642 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Dillon, C. P. et al. Survival function of the FADD-CASPASE-8-cFLIP(L) complex. Cell Rep. 1, 401–407 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Piao, X. et al. c-FLIP maintains tissue homeostasis by preventing apoptosis and programmed necrosis. Sci. Signal. 5, ra93 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Wittkopf, N. et al. Cellular FLICE-like inhibitory protein secures intestinal epithelial cell survival and immune homeostasis by regulating caspase-8. Gastroenterology 145, 1369–1379 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Panayotova-Dimitrova, D. et al. cFLIP regulates skin homeostasis and protects against TNF-induced keratinocyte apoptosis. Cell Rep. 5, 397–408 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Dillon, C. P. et al. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157, 1189–1202 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Rickard, J. A. et al. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157, 1175–1188 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Kaiser, W. J. et al. RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proc. Natl Acad. Sci. USA 111, 7753–7758 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Takahashi, N. et al. RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513, 95–99 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Gentle, I. E. et al. In TNF-stimulated cells, RIPK1 promotes cell survival by stabilizing TRAF2 and cIAP1, which limits induction of non-canonical NF-kappaB and activation of caspase-8. J. Biol. Chem. 286, 13282–13291 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Cuchet-Lourenco, D. et al. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. Science 361, 810–813 (2018). This study describes patients with RIPK1 deficiency developing immunodeficiency with autoinflammatory pathologies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Li, Y. et al. Human RIPK1 deficiency causes combined immunodeficiency and inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 116, 970–975 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Silva-Fernandez, L. & Hyrich, K. Rheumatoid arthritis: when TNF inhibitors fail in RA-weighing up the options. Nat. Rev. Rheumatol. 10, 262–264 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Roda, G., Jharap, B., Neeraj, N. & Colombel, J. F. Loss of response to anti-TNFs: definition, epidemiology, and management. Clin. Transl. Gastroenterol. 7, e135 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Esposito, M. et al. Survival rate of antitumour necrosis factor-alpha treatments for psoriasis in routine dermatological practice: a multicentre observational study. Br. J. Dermatol. 169, 666–672 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. 4, 313–321 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Xie, T. et al. Structural basis of RIP1 inhibition by necrostatins. Structure 21, 493–499 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Weisel, K. et al. A randomized, placebo-controlled experimental medicine study of RIPK1 inhibitor GSK2982772 in patients with moderate to severe rheumatoid arthritis. Arthritis Res. Ther. 23, 85 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Weisel, K. et al. A randomised, placebo-controlled study of RIPK1 inhibitor GSK2982772 in patients with active ulcerative colitis. BMJ Open Gastroenterol. 8, e000680 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Mandal, P. et al. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol. Cell 56, 481–495 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015). Shi et al. (2015) and Kayagaki et al. (2015) identify GSDMD as the substrate cleaved by caspase 11 to mediate pyroptosis.

    Article  CAS  PubMed  Google Scholar 

  180. Liu, X., Xia, S., Zhang, Z., Wu, H. & Lieberman, J. Channelling inflammation: gasdermins in physiology and disease. Nat. Rev. Drug Discov. 20, 384–405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hu, J. J. et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat. Immunol. 21, 736–745 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Li, S. et al. Gasdermin D in peripheral myeloid cells drives neuroinflammation in experimental autoimmune encephalomyelitis. J. Exp. Med. 216, 2562–2581 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Rathkey, J. K. et al. Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci. Immunol. 3, eaat2738 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Humphries, F. et al. Succination inactivates gasdermin D and blocks pyroptosis. Science 369, 1633–1637 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Rogers, C. et al. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat. Commun. 8, 14128 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  187. Hou, J. et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat. Cell Biol. 22, 1264–1275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kayagaki, N. et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131–136 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1, 489–495 (2000).

    Article  CAS  PubMed  Google Scholar 

  191. Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009).

    Article  CAS  PubMed  Google Scholar 

  192. Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137, 1100–1111 (2009). Zhang et al. (2009), Cho et al. (2009) and He et al. (2009) identify RIPK3 as crucial effector of TNF-induced necroptosis.

    Article  CAS  PubMed  Google Scholar 

  194. Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012). This study identifies MLKL as the most downstream crucial effector of TNF-induced necroptosis.

    Article  CAS  PubMed  Google Scholar 

  195. Brennan, F. M., Chantry, D., Jackson, A., Maini, R. & Feldmann, M. Inhibitory effect of TNF alpha antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. Lancet 2, 244–247 (1989).

    Article  CAS  PubMed  Google Scholar 

  196. Haworth, C. et al. Expression of granulocyte-macrophage colony-stimulating factor in rheumatoid arthritis: regulation by tumor necrosis factor-alpha. Eur. J. Immunol. 21, 2575–2579 (1991).

    Article  CAS  PubMed  Google Scholar 

  197. Williams, R. O., Feldmann, M. & Maini, R. N. Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc. Natl Acad. Sci. USA 89, 9784–9788 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Elliott, M. J. et al. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor alpha. Arthritis Rheum. 36, 1681–1690 (1993). This is the first clinical study with anti-TNF antibodies showing clinical improvement in most patients with rheumatoid arthritis.

    Article  CAS  PubMed  Google Scholar 

  199. Elliott, M. J. et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. Lancet 344, 1105–1110 (1994).

    Article  CAS  PubMed  Google Scholar 

  200. Elliott, M. J. et al. Repeated therapy with monoclonal antibody to tumour necrosis factor alpha (cA2) in patients with rheumatoid arthritis. Lancet 344, 1125–1127 (1994).

    Article  CAS  PubMed  Google Scholar 

  201. Lipsky, P. E. et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. N. Engl. J. Med. 343, 1594–1602 (2000).

    Article  CAS  PubMed  Google Scholar 

  202. Feldmann, M. & Maini, R. N. Lasker Clinical Medical Research Award. TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat. Med. 9, 1245–1250 (2003).

    Article  CAS  PubMed  Google Scholar 

  203. Croft, M., Benedict, C. A. & Ware, C. F. Clinical targeting of the TNF and TNFR superfamilies. Nat. Rev. Drug Discov. 12, 147–168 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The G.v.L. laboratory is supported by the Vlaams Instituut voor Biotechnologie, by Ghent University (BOF) and by grants from the Fonds voor Wetenschappelijk Onderzoek Vlaanderen (G090322N, G026520N, G012618N and EOS-G0H2522N), the Charcot Foundation, the Belgian Foundation against Cancer and the FOREUM Foundation for Research in Rheumatology. Research in the laboratory of M.J.M.B. is supported by the Vlaams Instituut voor Biotechnologie, by Ghent University (iBOF ATLANTIS) and by grants from the Fonds voor Wetenschappelijk Onderzoek Vlaanderen (G035320N, G044518N, EOS G0G6618N and EOS G0I5722N) and the Flemish Government (Methusalem BOF16/MET_V/007 to P. Vandenabeele).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Geert van Loo or Mathieu J. M. Bertrand.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks I. Aksentijevich and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

OMIM: www.omim.org

Glossary

Necroptosis

A programmed form of necrosis whose execution relies on the activation of receptor-interacting serine/threonine protein kinase 3 (RIPK3) and subsequent phosphorylation of mixed lineage kinase domain-like protein (MLKL) by RIPK3, ultimately leading to the translocation of phosphorylated MLKL to the plasma membrane, where it either directly or indirectly causes plasma membrane rupture.

Pyroptosis

A highly inflammatory form of programmed necrosis, usually caused by microbial infection, that relies on the proteolytic activation of the pore-forming molecule gasdermin D by caspase 1 and caspase 11 (or caspase 8). It is classically activated downstream of the inflammasome pathways and is associated with the release of biologically active IL-1β and IL-18.

Secondary necrosis

A lytic, or necrotic, form of cell death that occurs when apoptotic cells are not efficiently removed by efferocytosis. It involves proteolytic activation of the pore-forming molecule gasdermin E by the effector caspase 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Loo, G., Bertrand, M.J.M. Death by TNF: a road to inflammation. Nat Rev Immunol 23, 289–303 (2023). https://doi.org/10.1038/s41577-022-00792-3

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41577-022-00792-3

This article is cited by

Coming soon

We're working on ways to enable issue downloads.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing