Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral QuizTime Machine
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Roedderite

A valid IMA mineral species
This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About RoedderiteHide

08955580017271926429050.jpg
Edwin W. Roedder
Formula:
K(◻Na)Mg2Mg3[Si12O30]
Colour:
Colorless, yellowish to reddish brown, sapphire blue, greenish blue
Lustre:
Vitreous
Hardness:
5 - 6
Specific Gravity:
2.6
Crystal System:
Hexagonal
Member of:
Name:
Named after Edwin Woods Roedder (30 July 1919, Monsey, New York, USA – 1 August 2006 Gloucester, Massachusetts, USA), geologist with the United States Geological Survey who earlier discovered the synthetic compound. He was a leader in the field of fluid and melt inclusions. He was awarded the 1986 Roebling Medal and the 1988 Penrose medal, and served as president of the Mineralogical Society of America.

Unique IdentifiersHide

Mindat ID:
3437
Long-form identifier:
mindat:1:1:3437:7

IMA Classification of RoedderiteHide

Classification of RoedderiteHide

9.CM.05

9 : SILICATES (Germanates)
C : Cyclosilicates
M : [Si6O18]12- 6-membered double rings (sechser-Doppelringe)
63.2.1a.14

63 : CYCLOSILICATES Condensed Rings
2 : Condensed Rings (Milarite - Osumilite group)
14.24.4

14 : Silicates not Containing Aluminum
24 : Silicates of Fe, Mg and alkalis

Mineral SymbolsHide

As of 2021 there are now IMA–CNMNC approved mineral symbols (abbreviations) for each mineral species, useful for tables and diagrams.

Please only use the official IMA–CNMNC symbol. Older variants are listed for historical use only.

SymbolSourceReference
RdrIMA–CNMNCWarr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. doi:10.1180/mgm.2021.43
RdrWhitney & Evans (2010)Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187 doi:10.2138/am.2010.3371
RoeThe Canadian Mineralogist (2019)The Canadian Mineralogist (2019) The Canadian Mineralogist list of symbols for rock- and ore-forming minerals (December 30, 2019). download

Physical Properties of RoedderiteHide

Vitreous
Transparency:
Transparent, Translucent
Colour:
Colorless, yellowish to reddish brown, sapphire blue, greenish blue
Streak:
White
Hardness:
5 - 6 on Mohs scale
Cleavage:
None Observed
Density:
2.6 g/cm3 (Measured)    2.63 g/cm3 (Calculated)

Optical Data of RoedderiteHide

Type:
Uniaxial (+)
RI values:
nω = 1.537 - 1.543 nε = 1.536 - 1.547
2V:
Measured: 2° to 5°
Max. Birefringence:
δ = 0.001 - 0.004
Based on recorded range of RI values above.

Interference Colours:
The colours simulate birefringence patterns seen in thin section under crossed polars. They do not take into account mineral colouration or opacity.

Michel-Levy Bar The default colours simulate the birefringence range for a 30 µm thin-section thickness. Adjust the slider to simulate a different thickness.

Grain Simulation You can rotate the grain simulation to show how this range might look as you rotated a sample under crossed polars.

Surface Relief:
Moderate

Chemistry of RoedderiteHide

Mindat Formula:
K(◻Na)Mg2Mg3[Si12O30]
Element Weights:
Element% weight
O47.968 %
Si33.682 %
Mg12.145 %
K3.907 %
Na2.298 %

Calculated from ideal end-member formula.
Common Impurities:
Ti,Al,Mn

Crystallography of RoedderiteHide

Crystal System:
Hexagonal
Class (H-M):
6 m2 - Ditrigonal Dipyramidal
Space Group:
P62c
Cell Parameters:
a = 10.139(3) Å, c = 14.269(4) Å
Ratio:
a:c = 1 : 1.407
Unit Cell V:
1,270.32 ų (Calculated from Unit Cell)
Z:
2
Morphology:
Platy to short prismatic hexagonal crystals, exhibiting dominant {1010} and {0001} with {1120}, {1012}, and {1014}.

Crystal StructureHide

Load
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Show
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
View
CIF File    Best | x | y | z | a | b | c
Rotation
Stop | Start
Labels
Console Off | On | Grey | Yellow
IDSpeciesReferenceLinkYearLocalityPressure (GPa)Temp (K)
0006360RoedderiteArmbruster T (1989) Crystal chemistry of double-ring silicates: structure of roedderite at 100 and 300 K T= 100 K European Journal of Mineralogy 1 715-71819890293
0006361RoedderiteArmbruster T (1989) Crystal chemistry of double-ring silicates: structure of roedderite at 100 and 300 K T= 300 K European Journal of Mineralogy 1 715-71819890293
0014510RoedderiteAlietti E, Brigatti M F, Capedri S, Poppi L (1994) The roedderite-chayesite series from Spanish lamproites: crystal chemical characterization Mineralogical Magazine 58 655-6621994Cancarix, Albacete province, Spain0293
0014513RoedderiteAlietti E, Brigatti M F, Capedri S, Poppi L (1994) The roedderite-chayesite series from Spanish lamproites: crystal chemical characterization Mineralogical Magazine 58 655-6621994Cancarix, Albacete province, Spain0293
0014514RoedderiteAlietti E, Brigatti M F, Capedri S, Poppi L (1994) The roedderite-chayesite series from Spanish lamproites: crystal chemical characterization Mineralogical Magazine 58 655-6621994Cancarix, Albacete province, Spain0293
CIF Raw Data - click here to close

X-Ray Powder DiffractionHide

Powder Diffraction Data:
d-spacingIntensity
3.570 Å(100)
3.239 Å(77)
2.922 Å(67)
3.747 Å(66)
7.15 Å(64)
2.772 Å(44)
5.540 Å(36)

Geological EnvironmentHide

Paragenetic Mode(s):
Paragenetic ModeEarliest Age (Ga)
Stage 1: Primary nebular phases4.567-4.561
4 : Primary chondrule phases4.566–4.561
Stage 2: Planetesimal differentiation and alteration4.566-4.550
5 : Primary asteroid phases4.566–4.560
6 : Secondary asteroid phases4.566-4.560
Near-surface Processes
26 : Hadean detrital minerals
Geological Setting:
Contact-metamorphosed basement gneiss xenoliths in leucite
tephrite.

Type Occurrence of RoedderiteHide

General Appearance of Type Material:
Colorless grains. Also flat plates partly bounded laterally by faces intersecting at 120°.
Place of Conservation of Type Material:
n.d.
Geological Setting of Type Material:
Black enstatite chondrite meteorite.
Associated Minerals at Type Locality:

Synonyms of RoedderiteHide

Other Language Names for RoedderiteHide

German:Roedderit
Japanese:レダー石
Simplified Chinese:罗镁大隅石
Spanish:Roedderita

Relationship of Roedderite to other SpeciesHide

Member of:
Other Members of Osumilite Group:
Agakhanovite-(Y)K◻2(YCa)Be3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
AlmaruditeK◻2Mn2+2(Be2Al)[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mmm
AluminosugiliteKNa2Al2Li3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
ArmeniteBa(H2O)2Ca2Al3[Al3Si9O30]Orth. mmm (2/m 2/m 2/m) : Pnna
BerezanskiteK◻2Ti2Li3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
BrannockiteK◻2Sn2Li3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
ChayesiteK◻2Mg2(Mg2Fe3+)[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
DarapiositeKNa2Mn2(Zn2Li)[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
DusmatoviteK(K◻)Mn2+2Zn3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
EifeliteKNa2(MgNa)Mg3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
FriedrichbeckeiteK(◻Na)Mg2(Be2Mg)[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
KlöchiteK◻2(Fe2+Fe3+)Zn3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P63/mmc
LaurentthomasiteK◻2Mg2(Be2Al)[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
MerrihueiteK(◻Na)Fe2+2Fe2+3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
MilariteK(◻H2O)Ca2(Be2Al)[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
OftedaliteK◻2(ScCa)Be3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
OsumiliteK◻2Fe2+2Al3[Al2Si10O30] Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
Osumilite-(Mg)K◻2Mg2Al3[Al2Si10O30] Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
PoudretteiteK◻2Na2B3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
ShibkoviteK(◻K)Ca2Zn3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
SogdianiteK◻2Zr2Li3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
SugiliteKNa2Fe3+2Li3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
Trattnerite◻(◻)2Fe3+2Mg3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
UM1990-73-SiO:KMnNaZnK(KNa0.50.5)(Mn1.5Na0.5)Zn3[Si12O30]Hex.
Unnamed (Mn3+-dominant analog of Sugilite)KNa2Mn3+2Li3[Si12O30]
YagiiteNa◻2Mg2Al3[Al2Si10O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
Forms a series with:

Common AssociatesHide

Associated Minerals Based on Photo Data:
8 photos of Roedderite associated with HematiteFe2O3
8 photos of Roedderite associated with FerrosiliteFe2+2Si2O6
4 photos of Roedderite associated with Pyroxene GroupADSi2O6
3 photos of Roedderite associated with PseudobrookiteFe2TiO5
2 photos of Roedderite associated with TridymiteSiO2
2 photos of Roedderite associated with DiopsideCaMgSi2O6
1 photo of Roedderite associated with Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
1 photo of Roedderite associated with MagnetiteFe2+Fe3+2O4
1 photo of Roedderite associated with OsumiliteK◻2Fe2+2Al3[Al2Si10O30]
1 photo of Roedderite associated with EnstatiteMg2Si2O6

Related Minerals - Strunz-mindat GroupingHide

9.CM.Agakhanovite-(Y)K◻2(YCa)Be3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
9.CM.05FriedrichbeckeiteK(◻Na)Mg2(Be2Mg)[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
9.CM.05LaurentthomasiteK◻2Mg2(Be2Al)[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
9.CM.05UM1990-73-SiO:KMnNaZnK(KNa0.50.5)(Mn1.5Na0.5)Zn3[Si12O30]Hex.
9.CM.05EifeliteKNa2(MgNa)Mg3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
9.CM.05AlmaruditeK◻2Mn2+2(Be2Al)[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mmm
9.CM.05ArmeniteBa(H2O)2Ca2Al3[Al3Si9O30]Orth. mmm (2/m 2/m 2/m) : Pnna
9.CM.05MerrihueiteK(◻Na)Fe2+2Fe2+3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
9.CM.05OftedaliteK◻2(ScCa)Be3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
9.CM.05ShibkoviteK(◻K)Ca2Zn3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
9.CM.05SogdianiteK◻2Zr2Li3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
9.CM.05MilariteK(◻H2O)Ca2(Be2Al)[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
9.CM.05BerezanskiteK◻2Ti2Li3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
9.CM.05PoudretteiteK◻2Na2B3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
9.CM.05DarapiositeKNa2Mn2(Zn2Li)[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
9.CM.05ChayesiteK◻2Mg2(Mg2Fe3+)[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
9.CM.05Osumilite-(Mg)K◻2Mg2Al3[Al2Si10O30] Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
9.CM.05OsumiliteK◻2Fe2+2Al3[Al2Si10O30] Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
9.CM.05SugiliteKNa2Fe3+2Li3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
9.CM.05Trattnerite◻(◻)2Fe3+2Mg3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
9.CM.05BrannockiteK◻2Sn2Li3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
9.CM.05KlöchiteK◻2(Fe2+Fe3+)Zn3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P63/mmc
9.CM.05DusmatoviteK(K◻)Mn2+2Zn3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
9.CM.05YagiiteNa◻2Mg2Al3[Al2Si10O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
9.CM.9.CM.AluminosugiliteKNa2Al2Li3[Si12O30]Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
9.CM.10FaizieviteK2Na(Ca6Na)Ti4Li6[Si6O18]2[Si12O30]F2Tric. 1 : P1

RadioactivityHide

Radioactivity:
Element % Content Activity (Bq/kg) Radiation Type
Uranium (U) 0.0000% 0 α, β, γ
Thorium (Th) 0.0000% 0 α, β, γ
Potassium (K) 3.9074% 1,211 β, γ

For comparison:

  • Banana: ~15 Bq per fruit
  • Granite: 1,000–3,000 Bq/kg
  • EU exemption limit: 10,000 Bq/kg

Note: Risk is shown relative to daily recommended maximum exposure to non-background radiation of 1000 µSv/year. Note that natural background radiation averages around 2400 µSv/year so in reality these risks are probably extremely overstated! With infrequent handling and safe storage natural radioactive minerals do not usually pose much risk.

Interactive Simulator:

Note: The mass selector refers to the mass of radioactive mineral present, not the full specimen, also be aware that the matrix may also be radioactive, possibly more radioactive than this mineral!

Activity:

DistanceDose rateRisk
1 cm
10 cm
1 m

The external dose rate (D) from a radioactive mineral is estimated by summing the gamma radiation contributions from its Uranium, Thorium, and Potassium content, disregarding daughter-product which may have a significant effect in some cases (eg 'pitchblende'). This involves multiplying the activity (A, in Bq) of each element by its specific gamma ray constant (Γ), which accounts for its unique gamma emissions. The total unshielded dose at 1 cm is then scaled by the square of the distance (r, in cm) and multiplied by a shielding factor (μshield). This calculation provides a 'worst-case' or 'maximum risk' estimate because it assumes the sample is a point source and entirely neglects any self-shielding where radiation is absorbed within the mineral itself, meaning actual doses will typically be lower. The resulting dose rate (D) is expressed in microsieverts per hour (μSv/h).

D = ((AU × ΓU) + (ATh × ΓTh) + (AK × ΓK)) / r2 × μshield

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

Internet Links for RoedderiteHide

References for RoedderiteHide

Localities for RoedderiteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for references and further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (e.g. from pseudomorphs).

All localities listed without proper references should be considered as questionable.
Antarctica
 
  • East Antarctica
    • Queen Maud Land
      • Queen Fabiola Mountains
Brearley et al. (1998)
    • Victoria Land
      • Allan Hills
Krot et al. (1994)
Austria
 
  • Styria
    • Südoststeiermark District
      • Bad Gleichenberg
        • Wilhelmsdorf
Postl et al. (1996)
      • Feldbach
        • Mühldorf bei Feldbach
Postl et al. (1996)
      • Klöch
Lapis 2003 (1) +1 other reference
Azerbaijan (TL)
 
  • Aghjabadi District
    • Hindarx
Fuchs et al. (1966) +3 other references
China
 
  • Anhui
    • Bozhou
      • Qiaocheng District
        • Xiaoyanzhuang
www.lpi.usra.edu (n.d.)
  • Guizhou
    • Guiyang
      • Qingzhen County
Rambaldi et al. (1986) +1 other reference
France
 
  • Auvergne-Rhône-Alpes
    • Haute-Loire
      • Le Puy-en-Velay
        • Espaly-Saint-Marcel
Barrier D et al. (2004)
        • Le Brignon
P & E Médard collection
    • Puy-de-Dôme
      • Issoire
        • Perpezat
Valverde (2009)
Germany
 
  • Rhineland-Palatinate
    • Mayen-Koblenz
      • Maifeld
        • Ochtendung
Rondorf et al. (1988)
      • Mendig
        • Bell
in the collection of Christof Schäfer
      • Pellenz
        • Nickenich
Hentschel (1983)
Künzel et al. (2011)
      • Vordereifel
        • Ettringen
Hentschel et al. (1977) +1 other reference
    • Vulkaneifel
      • Daun
        • Oberstadtfeld
Leu (1995)
        • Üdersdorf
Künzel
      • Kelberg
        • Drees
Schüller (1990)
Hungary
 
  • Szabolcs-Szatmár-Bereg County
    • Tarpa
Sándor et al. (2005)
India
 
  • Uttar Pradesh
    • Basti District
      • Gorakhpur
Japan
 
  • Kagoshima Prefecture
    • Kagoshima District
      • Mishima village
... +2 other references
... +2 other references
Amir Akhavan Field Observations
Malawi
 
  • Central Region
    • Nkhotakota
Brearley et al. (1998)
Oman
 
  • Al Wusta Governorate
    • Sayh al Uhaymir
Fersman Mineralogical Museum
Romania
 
  • Harghita County
Krot et al. (1994)
Spain
 
  • Castile-La Mancha
    • Albacete
      • Hellín
Venturelli et al. (1984) +2 other references
Salvioli-Mariani et al. (1996)
Sudan
 
  • Kassala
    • Gash delta
...
USA
 
  • Arizona
    • Coconino County
      • Meteor Crater area
Olsen et al. (1968) +1 other reference
  • Texas
    • Wichita County
      • Electra
rruff.geo.arizona.edu (n.d.)
Yemen
 
  • Hadhramaut Governorate
LPSC 26 (1995) +1 other reference
Outer Space
 
Ishii et al. (2008)
 
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: December 4, 2025 06:13:20 Page updated: November 8, 2025 21:51:16
Go to top of page