I'm sure this will be a duplicate question, but I can't seem to find the words to locate one.
I have a set of very similar models I'd like to code up. The models are all the same, apart from a single function / line of code. I'd like to avoid any code repetition. Let' see an MWE:
import numpy as np
class SinModel:
def __init__(self):
self.x = np.linspace(-np.pi, np.pi)
def run(self):
# Computations which are invariant of the function we use later
self.y = np.sin(self.x)
# More computations which are invariant of which funcion was used
Our second model will involve the same series of computations, but will use a different function mid way though (here, cosine instead of sine):
class CosModel:
def __init__(self):
self.x = np.linspace(-np.pi, np.pi)
def run(self):
# Computations which are the same as in SinModel
self.y = np.cos(self.x)
# More computations which are the same as in SinModel
Here I have lots of code repetition. Is there a better way to implement these models? I was hoping it would be possible to create a class Model which could inherit the differing function from an arbitrary class.
An important note is that the function which changes between models may take different arguments from self depending on the model.
runinto two parts? Splitting before and after the function I'd like to alter? Then the child classes could have some method which would execute the first half ofrunas inherited from the parent, compute the function, and then compute the second half ofrunas inherited?