A k-rough number, as defined by Finch in 2001 and 2003, is a positive integer whose prime factors are all greater than or equal to k. k-roughness has alternately been defined as requiring all prime factors to strictly exceed k.[1]

Examples (after Finch)

edit
  1. Every odd positive integer is 3-rough.
  2. Every positive integer that is congruent to 1 or 5 mod 6 is 5-rough.
  3. Every positive integer is 2-rough, since all its prime factors, being prime numbers, exceed 1.

Powerrough numbers

edit

Like powersmooth numbers, we define "n-powerrough numbers" as the numbers whose prime factorization   has   for every   (while the condition is   for n-powersmooth numbers), e.g. every positive integer is 2-powerrough, 3-powerrough numbers are exactly the numbers not == 2 mod 4, 4-powerrough numbers are exactly the numbers neither == 2 mod 4 nor == 3, 6 mod 9, 5-powerrough numbers are exactly the numbers neither == 2, 4, 6 mod 8 nor == 3, 6 mod 9, etc.

See also

edit

Notes

edit
  1. ^ p. 130, Naccache and Shparlinski 2009.

References

edit
  • Weisstein, Eric W. "Rough Number". MathWorld.
  • Finch's definition from Number Theory Archives
  • "Divisibility, Smoothness and Cryptographic Applications", D. Naccache and I. E. Shparlinski, pp. 115–173 in Algebraic Aspects of Digital Communications, eds. Tanush Shaska and Engjell Hasimaj, IOS Press, 2009, ISBN 9781607500193.

The On-Line Encyclopedia of Integer Sequences (OEIS) lists p-rough numbers for small p: