Minimum detectable activity

Minimum detectable activity (MDA) is the lowest activity of a radioactive nuclide that can be detected with a detector, to some confidence level.[1][page needed] It is a concept that is used in several circumstances, such as in whole-body counting or radiation monitoring, to aid in determining the presence or absence of a radioactive substance or comparing the performance of different detector systems. There are several ways to calculate MDA that are commonly used, including the ISO11929 standard and the Currie method.[2] The Currie method is given by[3]

,

where ins the detection limit in units of counts, is the detection efficiency of the detector, is the emission probability of the radiation, and is the live time of the measurement. The formula for will vary depending on the specified confidence level. For false-negative and false-positive rates of 5%,[1]

,

where is the background counts. In other words, to achieve a low MDA, low background counts and a high efficiency are desired. Methods to decrease MDAs include utilizing coincidence measurements,[4] large detection volumes,[5] or using large shielding and underground measurement facilities.[6]

References

edit
  1. ^ a b Gilmore, Gordon (2011). Practical gamma-ray spectrometry (2., repr. with corr ed.). Chichester: Wiley. ISBN 978-0-470-86196-7.
  2. ^ Done, L.; Ioan, M-R. (2016). "Minimum Detectable Activity in gamma spectrometry and its use in low level activity measurements". Applied Radiation and Isotopes. 114: 28–32. Bibcode:2016AppRI.114...28D. doi:10.1016/j.apradiso.2016.05.004. ISSN 0969-8043. PMID 27172893.
  3. ^ Currie, L. A. (1968). "Limits for qualitative detection and quantitative determination: Application to radiochemistry". Analytical Chemistry. 40 (3): 586–593. Bibcode:1968AnaCh..40..586C. doi:10.1021/ac60259a007. ISSN 0003-2700.
  4. ^ Britton, R.; Davies, A. V.; Burnett, J. L.; Jackson, M. J. (2015). "A high-efficiency HPGe coincidence system for environmental analysis". Journal of Environmental Radioactivity. 146: 1–5. Bibcode:2015JEnvR.146....1B. doi:10.1016/j.jenvrad.2015.03.033. ISSN 0265-931X. PMID 25875083.
  5. ^ Keyser, R. M.; Twomey, T. R.; Wagner, S. E. (1990). "The Benefits of Using Super-Large Germanium Gamma- Ray Detectors for the Quantitative Determination of Environmental Radionuclides" (PDF). Ortec. Retrieved 10 November 2025.
  6. ^ Laubenstein, M.; Hult, M.; Gasparro, J.; Arnold, D.; Naumaier, S.; Heusser, G.; Köhler, M.; Povinec, P.; Reyss, J.-L.; Schwaiger, M.; Theodórsson, P. (2004). "Underground measurements of radioactivity". Applied Radiation and Isotopes. 61 (2–3): 167–172. Bibcode:2004AppRI..61..167L. doi:10.1016/j.apradiso.2004.03.039. ISSN 0969-8043. PMID 15177339.