It is possible that $n^{-1}\sum_{i=1}^nx_iy_i$ does not converge in distribution.
Let $(n_u)_{u\geqslant 1}$ be an increasing sequence of integers that will be specified later, let $Z$ be a random variable having standard normal distribution and let $y_i=1$. For $n_{2\ell}\leqslant i<n_{2\ell+1}$, $y_i:=(-1)^i Z$ and for $n_{2\ell+1}\leqslant i<n_{2\ell+2}$, let $y_i:=Z$.
Consequently,
$$
\left\lvert \frac 1{n_{2\ell+1}}\sum_{i=1}^{n_{2\ell+1}}x_iy_i\right\rvert=\left\lvert \frac 1{n_{2\ell+1}}\sum_{k=1}^{\ell-1}(n_{2k+2}-n_{2k+1})Z\right\rvert
\leqslant \ell \frac{n_{2\ell}}{n_{2\ell+1}}\lvert Z\rvert
$$
and
$$
\frac 1{n_{2\ell+2}}\sum_{i=1}^{n_{2\ell+2}}x_iy_i=\frac 1{n_{2\ell+2}}\sum_{k=1}^{\ell}(n_{2k+2}-n_{2k+1})Z
=\frac{n_{2\ell+2}-n_{2\ell+1}}{n_{2\ell+2}}Z+\frac 1{n_{2\ell+2}}\sum_{k=1}^{\ell-1}(n_{2k+2}-n_{2k+1})Z.
$$
If we assume that $\ell n_{2\ell}/n_{2\ell+1}\to 0$, then the subsequence $\left(\frac 1{n_{2\ell+1}}\sum_{i=1}^{n_{2\ell+1}}x_iy_i\right)$ converges to $0$ and if we furthermore assume that $n_{2\ell+1}/n_{2\ell+2}\to 0$, then the subsequence $\left(\frac 1{n_{2\ell+2}}\sum_{i=1}^{n_{2\ell+2}}x_iy_i\right)$ converges to $Z$ in distribution.