Skip to content

Pragmatic AI Labs MCP Agent Toolkit - An MCP Server designed to make code with agents more deterministic

Notifications You must be signed in to change notification settings

paiml/paiml-mcp-agent-toolkit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

PAIML MCP Agent Toolkit

CI/CD MCP Compatible License: MIT

Zero-configuration AI context generation system that analyzes any codebase instantly through CLI, MCP, or HTTP interfaces. Built by Pragmatic AI Labs.

πŸš€ Installation

curl -sSfL https://raw.githubusercontent.com/paiml/paiml-mcp-agent-toolkit/master/scripts/install.sh | sh

πŸ“‹ Tool Usage

CLI Interface

# Zero-configuration context generation
pmat context                                    # Auto-detects language
pmat context --format json                     # JSON output
pmat context rust                              # Force language

# Code analysis
pmat analyze complexity --top-files 5         # Complexity analysis
pmat analyze churn --days 30                  # Git history analysis  
pmat analyze dag --target-nodes 25            # Dependency graph
pmat analyze dead-code --format json          # Dead code detection
pmat analyze satd --top-files 10              # Technical debt
pmat analyze deep-context --format json       # Comprehensive analysis
pmat analyze big-o                            # Big-O complexity analysis
pmat analyze makefile-lint                    # Makefile quality linting
pmat analyze proof-annotations                # Provability analysis

# New in v0.26.0
pmat analyze graph-metrics                    # Graph centrality metrics (PageRank, betweenness, closeness)
pmat analyze name-similarity "function_name"  # Fuzzy name matching with phonetic support
pmat analyze symbol-table                     # Symbol extraction with cross-references
pmat analyze duplicates --min-lines 10        # Code duplication detection
pmat quality-gate --strict                    # Comprehensive quality enforcement
pmat diagnose --verbose                       # Self-diagnostics and health checks

# Project scaffolding
pmat scaffold rust --templates makefile,readme,gitignore
pmat list                                      # Available templates

# Refactoring engine
pmat refactor interactive                      # Interactive refactoring
pmat refactor serve --config refactor.json     # Batch refactoring
pmat refactor status                          # Check refactor progress
pmat refactor resume                          # Resume from checkpoint

# Demo and visualization
pmat demo --format table                      # CLI demo
pmat demo --web --port 8080                   # Web interface
pmat demo --repo https://github.com/user/repo # Analyze GitHub repo
πŸ’« See CLI usage in action
Context and code analysis:

Running demos/visualization:

MCP Integration (Claude Code)

# Add to Claude Code
claude mcp add paiml-toolkit ~/.local/bin/pmat
πŸ’« See Claude Code usage in action

Available MCP tools:

  • generate_template - Generate project files from templates
  • scaffold_project - Generate complete project structure
  • analyze_complexity - Code complexity metrics
  • analyze_code_churn - Git history analysis
  • analyze_dag - Dependency graph generation
  • analyze_dead_code - Dead code detection
  • analyze_deep_context - Comprehensive analysis
  • generate_context - Zero-config context generation
  • analyze_big_o - Big-O complexity analysis with confidence scores
  • analyze_makefile_lint - Lint Makefiles with 50+ quality rules
  • analyze_proof_annotations - Lightweight formal verification
  • analyze_graph_metrics - Graph centrality and PageRank analysis
  • refactor_interactive - Interactive refactoring with explanations

HTTP API

# Start server
pmat serve --port 8080 --cors

# API endpoints
curl "http://localhost:8080/health"
curl "http://localhost:8080/api/v1/analyze/complexity?top_files=5"
curl "http://localhost:8080/api/v1/templates"

# POST analysis
curl -X POST "http://localhost:8080/api/v1/analyze/deep-context" \
  -H "Content-Type: application/json" \
  -d '{"project_path":"./","include":["ast","complexity","churn"]}'

πŸ”§ Supported Languages

  • Rust - Complete AST analysis, complexity metrics
  • TypeScript/JavaScript - Full parsing and analysis
  • Python - AST analysis and code metrics
  • C/C++ - Goto tracking, macro analysis, memory safety indicators
  • Cython - Hybrid Python/C analysis
  • Kotlin - Full AST parsing for classes, functions, interfaces, and more

πŸ“š Documentation

Feature Documentation

Additional Features

  • Code Quality Tools

    • pmat analyze makefile-lint - Lint Makefiles with 50+ quality rules
    • pmat excellence-tracker - Track code quality metrics over time
    • pmat refactor serve - Batch refactoring with checkpoints
    • pmat refactor interactive - Interactive refactoring with explanations
  • Advanced Analysis

    • pmat analyze tdg - Calculate Technical Debt Gradient
    • pmat analyze proof-annotations - Lightweight formal verification
    • pmat analyze defect-prediction - ML-based defect prediction
    • pmat analyze name-similarity - Semantic name search with embeddings
    • pmat analyze big-o - Big-O complexity with confidence scores
    • pmat analyze graph-metrics - PageRank and centrality metrics
    • pmat analyze incremental-coverage - Coverage changes since base branch

πŸ“Š Output Formats

  • JSON - Structured data for tools and APIs
  • Markdown - Human-readable reports
  • SARIF - Static analysis format for IDEs
  • Mermaid - Dependency graphs and diagrams

🌐 Language Support

  • Rust - Complete AST analysis with native syn parser
  • TypeScript/JavaScript - Full parsing support via SWC
  • Python - AST analysis with rustpython-parser
  • C/C++ - Tree-sitter based parsing with comprehensive coverage
  • Kotlin - Full AST support via tree-sitter-kotlin (v0.26.0)
  • Go, Java, Ruby - Basic support via unified AST

All parsers include memory safety protections and iterative processing to handle large codebases efficiently.

🎯 Use Cases

For AI Agents

  • Context Generation: Give AI perfect project understanding
  • Code Analysis: Deterministic metrics and facts
  • Template Generation: Scaffolding with best practices

For Developers

  • Code Reviews: Automated complexity and quality analysis
  • Technical Debt: SATD detection and prioritization
  • Onboarding: Quick project understanding
  • CI/CD: Integrate quality gates and analysis

For Teams

  • Documentation: Auto-generated project overviews
  • Quality Gates: Automated quality scoring
  • Dependency Analysis: Visual dependency graphs
  • Project Health: Comprehensive health metrics

πŸ“š Documentation

πŸ› οΈ System Operations

Memory Management

For systems with low swap space, we provide a configuration tool:

make config-swap      # Configure 8GB swap (requires sudo)
make clear-swap       # Clear swap memory between heavy operations

πŸ§ͺ Testing

The project uses a distributed test architecture for fast feedback:

# Run specific test suites
make test-unit        # <10s - Core logic tests
make test-services    # <30s - Service integration
make test-protocols   # <45s - Protocol validation
make test-e2e         # <120s - Full system tests
make test-performance # Performance regression

# Run all tests in parallel
make test-all

# Coverage analysis
make coverage-stratified

🀝 Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Run make test-fast for validation
  4. Submit a pull request

πŸ“„ License

MIT License - see LICENSE file for details.


Built with ❀️ by Pragmatic AI Labs

About

Pragmatic AI Labs MCP Agent Toolkit - An MCP Server designed to make code with agents more deterministic

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •