A Model Context Protocol (MCP) server that provides seamless integration between AI assistants and Prometheus, enabling natural language interactions with your monitoring infrastructure. This server allows for effortless querying, discovery, and analysis of metrics through Visual Studio Code, Cursor, Windsurf, Claude Desktop, and other MCP clients.
- Fast and lightweight. Direct API integration with Prometheus, no complex parsing needed.
- LLM-friendly. Structured JSON responses optimized for AI assistant consumption.
- Configurable capabilities. Enable/disable tool categories based on your security and operational requirements.
- Dual transport support. Works with both stdio and HTTP transports for maximum compatibility.
- Node.js 20.19.0 or newer
- Access to a Prometheus server
- VS Code, Cursor, Windsurf, Claude Desktop or any other MCP client
First, install the Prometheus MCP server with your client. A typical configuration looks like this:
{
"mcpServers": {
"prometheus": {
"command": "npx",
"args": ["prometheus-mcp@latest", "stdio"],
"env": {
"PROMETHEUS_URL": "http://localhost:9090"
}
}
}
}
Install in VS Code
# For VS Code
code --add-mcp '{"name":"prometheus","command":"npx","args":["prometheus-mcp@latest","stdio"],"env":{"PROMETHEUS_URL":"http://localhost:9090"}}'
# For VS Code Insiders
code-insiders --add-mcp '{"name":"prometheus","command":"npx","args":["prometheus-mcp@latest","stdio"],"env":{"PROMETHEUS_URL":"http://localhost:9090"}}'
After installation, the Prometheus MCP server will be available for use with your GitHub Copilot agent in VS Code.
Install in Cursor
Go to Cursor Settings
→ MCP
→ Add new MCP Server
. Name to your liking, use
command
type with the command npx prometheus-mcp
. You can also verify config or add
command arguments via clicking Edit
.
{
"mcpServers": {
"prometheus": {
"command": "npx",
"args": ["prometheus-mcp@latest", "stdio"],
"env": {
"PROMETHEUS_URL": "http://localhost:9090"
}
}
}
}
Install in Windsurf
Follow Windsurf MCP documentation. Use the following configuration:
{
"mcpServers": {
"prometheus": {
"command": "npx",
"args": ["prometheus-mcp@latest", "stdio"],
"env": {
"PROMETHEUS_URL": "http://localhost:9090"
}
}
}
}
Install in Claude Desktop
Follow the MCP install guide, use the following configuration:
{
"mcpServers": {
"prometheus": {
"command": "npx",
"args": ["prometheus-mcp@latest", "stdio"],
"env": {
"PROMETHEUS_URL": "http://localhost:9090"
}
}
}
}
Prometheus MCP server supports the following arguments. They can be provided in the JSON
configuration above, as part of the "args"
list:
> npx prometheus-mcp@latest --help
Commands:
stdio Start Prometheus MCP server using stdio transport
http Start Prometheus MCP server using HTTP transport
Options:
--help Show help [boolean]
--version Show version number [boolean]
You can also configure the server using environment variables:
PROMETHEUS_URL
- Prometheus server URLENABLE_DISCOVERY_TOOLS
- Set to "false" to disable discovery tools (default: true)ENABLE_INFO_TOOLS
- Set to "false" to disable info tools (default: true)ENABLE_QUERY_TOOLS
- Set to "false" to disable query tools (default: true)
When running in server environments or when you need HTTP transport, run the MCP server
with the http
command:
npx prometheus-mcp@latest http --port 3000
And then in your MCP client config, set the url
to the HTTP endpoint:
{
"mcpServers": {
"prometheus": {
"command": "npx",
"args": ["mcp-remote", "http://localhost:3000/mcp"]
}
}
}
Run the Prometheus MCP server using Docker:
{
"mcpServers": {
"prometheus": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"--init",
"--pull=always",
"-e",
"PROMETHEUS_URL=http://host.docker.internal:9090",
"ghcr.io/idanfishman/prometheus-mcp",
"stdio"
]
}
}
}
The Prometheus MCP server provides 10 tools organized into three configurable categories:
Discovery
Tools for exploring your Prometheus infrastructure:
-
prometheus_list_metrics
- Description: List all available Prometheus metrics
- Parameters: None
- Read-only: true
-
prometheus_metric_metadata
- Description: Get metadata for a specific Prometheus metric
- Parameters:
metric
(string): Metric name to get metadata for
- Read-only: true
-
prometheus_list_labels
- Description: List all available Prometheus labels
- Parameters: None
- Read-only: true
-
prometheus_label_values
- Description: Get all values for a specific Prometheus label
- Parameters:
label
(string): Label name to get values for
- Read-only: true
-
prometheus_list_targets
- Description: List all Prometheus scrape targets
- Parameters: None
- Read-only: true
-
prometheus_scrape_pool_targets
- Description: Get targets for a specific scrape pool
- Parameters:
scrapePool
(string): Scrape pool name
- Read-only: true
Info
Tools for accessing Prometheus server information:
-
prometheus_runtime_info
- Description: Get Prometheus runtime information
- Parameters: None
- Read-only: true
-
prometheus_build_info
- Description: Get Prometheus build information
- Parameters: None
- Read-only: true
Query
Tools for executing Prometheus queries:
-
prometheus_query
- Description: Execute an instant Prometheus query
- Parameters:
query
(string): Prometheus query expressiontime
(string, optional): Time parameter for the query (RFC3339 format)
- Read-only: true
-
prometheus_query_range
- Description: Execute a Prometheus range query
- Parameters:
query
(string): Prometheus query expressionstart
(string): Start timestamp (RFC3339 or unix timestamp)end
(string): End timestamp (RFC3339 or unix timestamp)step
(string): Query resolution step width
- Read-only: true
Here are some example interactions you can have with your AI assistant:
- "Show me all available metrics in Prometheus"
- "What's the current CPU usage across all instances?"
- "Get the memory usage for the last hour"
- "List all scrape targets and their status"
- "What labels are available for the
http_requests_total
metric?" - "Show me all metrics related to 'cpu'"
- "Compare CPU usage between production and staging environments"
- "Show me the top 10 services by memory consumption"
- "What's the error rate trend for the API service over the last 24 hours?"
- Network Access: The server requires network access to your Prometheus instance
- Resource Usage: Range queries can be resource-intensive; monitor your Prometheus server load
- Verify your Prometheus server is accessible at the configured URL
- Check firewall settings and network connectivity
- Ensure Prometheus API is enabled (default on port 9090)
- Verify the MCP server has network access to Prometheus
- Check if authentication is required for your Prometheus setup
- If certain tools are missing, check if they've been disabled via configuration
This project is licensed under the MIT License - see the LICENSE file for details.
- GitHub Issues: Report bugs or request features
- Documentation: Model Context Protocol Documentation
- Prometheus: Prometheus Documentation
Built with ❤️ for the Prometheus and MCP communities