- 2.28.0 (latest)
 - 2.27.0
 - 2.26.0
 - 2.25.0
 - 2.24.0
 - 2.23.0
 - 2.22.0
 - 2.21.0
 - 2.20.0
 - 2.19.0
 - 2.18.0
 - 2.17.0
 - 2.16.0
 - 2.15.0
 - 2.14.0
 - 2.13.0
 - 2.12.0
 - 2.11.0
 - 2.10.0
 - 2.9.0
 - 2.8.0
 - 2.7.0
 - 2.6.0
 - 2.5.0
 - 2.4.0
 - 2.3.0
 - 2.2.0
 - 1.36.0
 - 1.35.0
 - 1.34.0
 - 1.33.0
 - 1.32.0
 - 1.31.0
 - 1.30.0
 - 1.29.0
 - 1.28.0
 - 1.27.0
 - 1.26.0
 - 1.25.0
 - 1.24.0
 - 1.22.0
 - 1.21.0
 - 1.20.0
 - 1.19.0
 - 1.18.0
 - 1.17.0
 - 1.16.0
 - 1.15.0
 - 1.14.0
 - 1.13.0
 - 1.12.0
 - 1.11.1
 - 1.10.0
 - 1.9.0
 - 1.8.0
 - 1.7.0
 - 1.6.0
 - 1.5.0
 - 1.4.0
 - 1.3.0
 - 1.2.0
 - 1.1.0
 - 1.0.0
 - 0.26.0
 - 0.25.0
 - 0.24.0
 - 0.23.0
 - 0.22.0
 - 0.21.0
 - 0.20.1
 - 0.19.2
 - 0.18.0
 - 0.17.0
 - 0.16.0
 - 0.15.0
 - 0.14.1
 - 0.13.0
 - 0.12.0
 - 0.11.0
 - 0.10.0
 - 0.9.0
 - 0.8.0
 - 0.7.0
 - 0.6.0
 - 0.5.0
 - 0.4.0
 - 0.3.0
 - 0.2.0
 
SimpleImputer(strategy: typing.Literal["mean", "median", "most_frequent"] = "mean")Univariate imputer for completing missing values with simple strategies.
Replace missing values using a descriptive statistic (e.g. mean, median, or most frequent) along each column.
Examples:
>>> import bigframes.pandas as bpd
>>> from bigframes.ml.impute import SimpleImputer
>>> bpd.options.display.progress_bar = None
>>> X_train = bpd.DataFrame({"feat0": [7.0, 4.0, 10.0], "feat1": [2.0, None, 5.0], "feat2": [3.0, 6.0, 9.0]})
>>> imp_mean = SimpleImputer().fit(X_train)
>>> X_test = bpd.DataFrame({"feat0": [None, 4.0, 10.0], "feat1": [2.0, None, None], "feat2": [3.0, 6.0, 9.0]})
>>> imp_mean.transform(X_test)
   imputer_feat0  imputer_feat1  imputer_feat2
0            7.0            2.0            3.0
1            4.0            3.5            6.0
2           10.0            3.5            9.0
<BLANKLINE>
[3 rows x 3 columns]
Parameter | 
      |
|---|---|
| Name | Description | 
strategy | 
        
  	{'mean', 'median', 'most_frequent'}, default='mean'
  	The imputation strategy. 'mean': replace missing values using the mean along the axis. 'median':replace missing values using the median along the axis. 'most_frequent', replace missing using the most frequent value along the axis.  | 
      
Methods
__repr__
__repr__()Print the estimator's constructor with all non-default parameter values.
fit
fit(
    X: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ],
    y=None,
) -> bigframes.ml.impute.SimpleImputerFit the imputer on X.
| Parameters | |
|---|---|
| Name | Description | 
X | 
        
          bigframes.dataframe.DataFrame or bigframes.series.Series or pandas.core.frame.DataFrame or pandas.core.series.Series
          The Dataframe or Series with training data.  | 
      
y | 
        
          default None
          Ignored.  | 
      
| Returns | |
|---|---|
| Type | Description | 
SimpleImputer | 
        Fitted scaler. | 
fit_transform
fit_transform(
    X: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ],
    y: typing.Optional[
        typing.Union[
            bigframes.dataframe.DataFrame,
            bigframes.series.Series,
            pandas.core.frame.DataFrame,
            pandas.core.series.Series,
        ]
    ] = None,
) -> bigframes.dataframe.DataFrameFit to data, then transform it.
| Parameters | |
|---|---|
| Name | Description | 
X | 
        
          bigframes.dataframe.DataFrame or bigframes.series.Series
          Series or DataFrame of shape (n_samples, n_features). Input samples.  | 
      
y | 
        
          bigframes.dataframe.DataFrame or bigframes.series.Series
          Series or DataFrame of shape (n_samples,) or (n_samples, n_outputs). Default None. Target values (None for unsupervised transformations).  | 
      
| Returns | |
|---|---|
| Type | Description | 
bigframes.dataframe.DataFrame | 
        DataFrame of shape (n_samples, n_features_new). Transformed DataFrame. | 
get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]Get parameters for this estimator.
| Parameter | |
|---|---|
| Name | Description | 
deep | 
        
          bool, default True
          Default   | 
      
| Returns | |
|---|---|
| Type | Description | 
Dictionary | 
        A dictionary of parameter names mapped to their values. | 
to_gbq
to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.base._TSave the transformer as a BigQuery model.
| Parameters | |
|---|---|
| Name | Description | 
model_name | 
        
          str
          The name of the model.  | 
      
replace | 
        
          bool, default False
          Determine whether to replace if the model already exists. Default to False.  | 
      
transform
transform(
    X: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ],
) -> bigframes.dataframe.DataFrameImpute all missing values in X.
| Parameter | |
|---|---|
| Name | Description | 
X | 
        
          bigframes.dataframe.DataFrame or bigframes.series.Series or pandas.core.frame.DataFrame or pandas.core.series.Series
          The DataFrame or Series to be transformed.  | 
      
| Returns | |
|---|---|
| Type | Description | 
bigframes.dataframe.DataFrame | 
        Transformed result. |