- Time limit: 1.00 s
- Memory limit: 512 MB
You are given an array x_1,x_2,\dots,x_n. Let d(a,b) denote the number of distinct values in the subarray x_a,x_{a+1},\dots,x_b.
Your task is to calculate the sum \sum_{a=1}^n \sum_{b=a}^n d(a,b), i.e., the sum of d(a,b) for all subarrays.
Input
The first line has an integer n: the array size.
The next line has n integers x_1,x_2,\dots,x_n: the array contents.
Output
Print one integer: the required sum.
Constraints
- 1 \le n \le 2 \cdot 10^5
- 1 \le x_i \le 10^9
Example
Input:
5 1 2 3 1 1
Output:
29
Explanation: In this array, 6 subarrays have 1 distinct value, 4 subarrays have 2 distinct values and 5 subarrays have 3 distinct values. Thus, the sum is 6\cdot1+4\cdot2+5\cdot3=29.