- 2.28.0 (latest)
 - 2.27.0
 - 2.26.0
 - 2.25.0
 - 2.24.0
 - 2.23.0
 - 2.22.0
 - 2.21.0
 - 2.20.0
 - 2.19.0
 - 2.18.0
 - 2.17.0
 - 2.16.0
 - 2.15.0
 - 2.14.0
 - 2.13.0
 - 2.12.0
 - 2.11.0
 - 2.10.0
 - 2.9.0
 - 2.8.0
 - 2.7.0
 - 2.6.0
 - 2.5.0
 - 2.4.0
 - 2.3.0
 - 2.2.0
 - 1.36.0
 - 1.35.0
 - 1.34.0
 - 1.33.0
 - 1.32.0
 - 1.31.0
 - 1.30.0
 - 1.29.0
 - 1.28.0
 - 1.27.0
 - 1.26.0
 - 1.25.0
 - 1.24.0
 - 1.22.0
 - 1.21.0
 - 1.20.0
 - 1.19.0
 - 1.18.0
 - 1.17.0
 - 1.16.0
 - 1.15.0
 - 1.14.0
 - 1.13.0
 - 1.12.0
 - 1.11.1
 - 1.10.0
 - 1.9.0
 - 1.8.0
 - 1.7.0
 - 1.6.0
 - 1.5.0
 - 1.4.0
 - 1.3.0
 - 1.2.0
 - 1.1.0
 - 1.0.0
 - 0.26.0
 - 0.25.0
 - 0.24.0
 - 0.23.0
 - 0.22.0
 - 0.21.0
 - 0.20.1
 - 0.19.2
 - 0.18.0
 - 0.17.0
 - 0.16.0
 - 0.15.0
 - 0.14.1
 - 0.13.0
 - 0.12.0
 - 0.11.0
 - 0.10.0
 - 0.9.0
 - 0.8.0
 - 0.7.0
 - 0.6.0
 - 0.5.0
 - 0.4.0
 - 0.3.0
 - 0.2.0
 
MultiIndex(data=None, dtype=None, *, name=None, session=None)A multi-level, or hierarchical, index object for pandas objects.
Methods
from_arrays
from_arrays(
    arrays, sortorder: typing.Optional[int] = None, names=None
) -> bigframes.core.indexes.multi.MultiIndexConvert arrays to MultiIndex.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']]
>>> bpd.MultiIndex.from_arrays(arrays, names=('number', 'color'))
MultiIndex([(1,  'red'),
            (1, 'blue'),
            (2,  'red'),
            (2, 'blue')],
        names=['number', 'color'])
| Parameters | |
|---|---|
| Name | Description | 
arrays | 
        
          list / sequence of array-likes
          Each array-like gives one level's value for each data point. len(arrays) is the number of levels.  | 
      
sortorder | 
        
          int or None
          Level of sortedness (must be lexicographically sorted by that level).  | 
      
names | 
        
          list / sequence of str, optional
          Names for the levels in the index.  | 
      
from_tuples
from_tuples(
    tuples: typing.Iterable[tuple[typing.Hashable, ...]],
    sortorder: typing.Optional[int] = None,
    names: typing.Optional[
        typing.Union[typing.Sequence[typing.Hashable], typing.Hashable]
    ] = None,
) -> bigframes.core.indexes.multi.MultiIndexConvert list of tuples to MultiIndex.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> tuples = [(1, 'red'), (1, 'blue'),
...           (2, 'red'), (2, 'blue')]
>>> bpd.MultiIndex.from_tuples(tuples, names=('number', 'color'))
MultiIndex([(1,  'red'),
            (1, 'blue'),
            (2,  'red'),
            (2, 'blue')],
        names=['number', 'color'])
| Parameters | |
|---|---|
| Name | Description | 
tuples | 
        
          list / sequence of tuple-likes
          Each tuple is the index of one row/column.  | 
      
sortorder | 
        
          int or None
          Level of sortedness (must be lexicographically sorted by that level).  | 
      
names | 
        
          list / sequence of str, optional
          Names for the levels in the index.  |