|  | /* -*- Mode: C; c-file-style: "python" -*- */ | 
|  |  | 
|  | #include <Python.h> | 
|  | #include <locale.h> | 
|  |  | 
|  | /* Case-insensitive string match used for nan and inf detection; t should be | 
|  | lower-case.  Returns 1 for a successful match, 0 otherwise. */ | 
|  |  | 
|  | static int | 
|  | case_insensitive_match(const char *s, const char *t) | 
|  | { | 
|  | while(*t && Py_TOLOWER(*s) == *t) { | 
|  | s++; | 
|  | t++; | 
|  | } | 
|  | return *t ? 0 : 1; | 
|  | } | 
|  |  | 
|  | /* _Py_parse_inf_or_nan: Attempt to parse a string of the form "nan", "inf" or | 
|  | "infinity", with an optional leading sign of "+" or "-".  On success, | 
|  | return the NaN or Infinity as a double and set *endptr to point just beyond | 
|  | the successfully parsed portion of the string.  On failure, return -1.0 and | 
|  | set *endptr to point to the start of the string. */ | 
|  |  | 
|  | double | 
|  | _Py_parse_inf_or_nan(const char *p, char **endptr) | 
|  | { | 
|  | double retval; | 
|  | const char *s; | 
|  | int negate = 0; | 
|  |  | 
|  | s = p; | 
|  | if (*s == '-') { | 
|  | negate = 1; | 
|  | s++; | 
|  | } | 
|  | else if (*s == '+') { | 
|  | s++; | 
|  | } | 
|  | if (case_insensitive_match(s, "inf")) { | 
|  | s += 3; | 
|  | if (case_insensitive_match(s, "inity")) | 
|  | s += 5; | 
|  | retval = negate ? -Py_HUGE_VAL : Py_HUGE_VAL; | 
|  | } | 
|  | #ifdef Py_NAN | 
|  | else if (case_insensitive_match(s, "nan")) { | 
|  | s += 3; | 
|  | retval = negate ? -Py_NAN : Py_NAN; | 
|  | } | 
|  | #endif | 
|  | else { | 
|  | s = p; | 
|  | retval = -1.0; | 
|  | } | 
|  | *endptr = (char *)s; | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * PyOS_ascii_strtod: | 
|  | * @nptr:    the string to convert to a numeric value. | 
|  | * @endptr:  if non-%NULL, it returns the character after | 
|  | *           the last character used in the conversion. | 
|  | * | 
|  | * Converts a string to a #gdouble value. | 
|  | * This function behaves like the standard strtod() function | 
|  | * does in the C locale. It does this without actually | 
|  | * changing the current locale, since that would not be | 
|  | * thread-safe. | 
|  | * | 
|  | * This function is typically used when reading configuration | 
|  | * files or other non-user input that should be locale independent. | 
|  | * To handle input from the user you should normally use the | 
|  | * locale-sensitive system strtod() function. | 
|  | * | 
|  | * If the correct value would cause overflow, plus or minus %HUGE_VAL | 
|  | * is returned (according to the sign of the value), and %ERANGE is | 
|  | * stored in %errno. If the correct value would cause underflow, | 
|  | * zero is returned and %ERANGE is stored in %errno. | 
|  | * If memory allocation fails, %ENOMEM is stored in %errno. | 
|  | * | 
|  | * This function resets %errno before calling strtod() so that | 
|  | * you can reliably detect overflow and underflow. | 
|  | * | 
|  | * Return value: the #gdouble value. | 
|  | **/ | 
|  |  | 
|  | #ifndef PY_NO_SHORT_FLOAT_REPR | 
|  |  | 
|  | double | 
|  | _PyOS_ascii_strtod(const char *nptr, char **endptr) | 
|  | { | 
|  | double result; | 
|  | _Py_SET_53BIT_PRECISION_HEADER; | 
|  |  | 
|  | assert(nptr != NULL); | 
|  | /* Set errno to zero, so that we can distinguish zero results | 
|  | and underflows */ | 
|  | errno = 0; | 
|  |  | 
|  | _Py_SET_53BIT_PRECISION_START; | 
|  | result = _Py_dg_strtod(nptr, endptr); | 
|  | _Py_SET_53BIT_PRECISION_END; | 
|  |  | 
|  | if (*endptr == nptr) | 
|  | /* string might represent an inf or nan */ | 
|  | result = _Py_parse_inf_or_nan(nptr, endptr); | 
|  |  | 
|  | return result; | 
|  |  | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | /* | 
|  | Use system strtod;  since strtod is locale aware, we may | 
|  | have to first fix the decimal separator. | 
|  |  | 
|  | Note that unlike _Py_dg_strtod, the system strtod may not always give | 
|  | correctly rounded results. | 
|  | */ | 
|  |  | 
|  | double | 
|  | _PyOS_ascii_strtod(const char *nptr, char **endptr) | 
|  | { | 
|  | char *fail_pos; | 
|  | double val = -1.0; | 
|  | struct lconv *locale_data; | 
|  | const char *decimal_point; | 
|  | size_t decimal_point_len; | 
|  | const char *p, *decimal_point_pos; | 
|  | const char *end = NULL; /* Silence gcc */ | 
|  | const char *digits_pos = NULL; | 
|  | int negate = 0; | 
|  |  | 
|  | assert(nptr != NULL); | 
|  |  | 
|  | fail_pos = NULL; | 
|  |  | 
|  | locale_data = localeconv(); | 
|  | decimal_point = locale_data->decimal_point; | 
|  | decimal_point_len = strlen(decimal_point); | 
|  |  | 
|  | assert(decimal_point_len != 0); | 
|  |  | 
|  | decimal_point_pos = NULL; | 
|  |  | 
|  | /* Parse infinities and nans */ | 
|  | val = _Py_parse_inf_or_nan(nptr, endptr); | 
|  | if (*endptr != nptr) | 
|  | return val; | 
|  |  | 
|  | /* Set errno to zero, so that we can distinguish zero results | 
|  | and underflows */ | 
|  | errno = 0; | 
|  |  | 
|  | /* We process the optional sign manually, then pass the remainder to | 
|  | the system strtod.  This ensures that the result of an underflow | 
|  | has the correct sign. (bug #1725)  */ | 
|  | p = nptr; | 
|  | /* Process leading sign, if present */ | 
|  | if (*p == '-') { | 
|  | negate = 1; | 
|  | p++; | 
|  | } | 
|  | else if (*p == '+') { | 
|  | p++; | 
|  | } | 
|  |  | 
|  | /* Some platform strtods accept hex floats; Python shouldn't (at the | 
|  | moment), so we check explicitly for strings starting with '0x'. */ | 
|  | if (*p == '0' && (*(p+1) == 'x' || *(p+1) == 'X')) | 
|  | goto invalid_string; | 
|  |  | 
|  | /* Check that what's left begins with a digit or decimal point */ | 
|  | if (!Py_ISDIGIT(*p) && *p != '.') | 
|  | goto invalid_string; | 
|  |  | 
|  | digits_pos = p; | 
|  | if (decimal_point[0] != '.' || | 
|  | decimal_point[1] != 0) | 
|  | { | 
|  | /* Look for a '.' in the input; if present, it'll need to be | 
|  | swapped for the current locale's decimal point before we | 
|  | call strtod.  On the other hand, if we find the current | 
|  | locale's decimal point then the input is invalid. */ | 
|  | while (Py_ISDIGIT(*p)) | 
|  | p++; | 
|  |  | 
|  | if (*p == '.') | 
|  | { | 
|  | decimal_point_pos = p++; | 
|  |  | 
|  | /* locate end of number */ | 
|  | while (Py_ISDIGIT(*p)) | 
|  | p++; | 
|  |  | 
|  | if (*p == 'e' || *p == 'E') | 
|  | p++; | 
|  | if (*p == '+' || *p == '-') | 
|  | p++; | 
|  | while (Py_ISDIGIT(*p)) | 
|  | p++; | 
|  | end = p; | 
|  | } | 
|  | else if (strncmp(p, decimal_point, decimal_point_len) == 0) | 
|  | /* Python bug #1417699 */ | 
|  | goto invalid_string; | 
|  | /* For the other cases, we need not convert the decimal | 
|  | point */ | 
|  | } | 
|  |  | 
|  | if (decimal_point_pos) { | 
|  | char *copy, *c; | 
|  | /* Create a copy of the input, with the '.' converted to the | 
|  | locale-specific decimal point */ | 
|  | copy = (char *)PyMem_MALLOC(end - digits_pos + | 
|  | 1 + decimal_point_len); | 
|  | if (copy == NULL) { | 
|  | *endptr = (char *)nptr; | 
|  | errno = ENOMEM; | 
|  | return val; | 
|  | } | 
|  |  | 
|  | c = copy; | 
|  | memcpy(c, digits_pos, decimal_point_pos - digits_pos); | 
|  | c += decimal_point_pos - digits_pos; | 
|  | memcpy(c, decimal_point, decimal_point_len); | 
|  | c += decimal_point_len; | 
|  | memcpy(c, decimal_point_pos + 1, | 
|  | end - (decimal_point_pos + 1)); | 
|  | c += end - (decimal_point_pos + 1); | 
|  | *c = 0; | 
|  |  | 
|  | val = strtod(copy, &fail_pos); | 
|  |  | 
|  | if (fail_pos) | 
|  | { | 
|  | if (fail_pos > decimal_point_pos) | 
|  | fail_pos = (char *)digits_pos + | 
|  | (fail_pos - copy) - | 
|  | (decimal_point_len - 1); | 
|  | else | 
|  | fail_pos = (char *)digits_pos + | 
|  | (fail_pos - copy); | 
|  | } | 
|  |  | 
|  | PyMem_FREE(copy); | 
|  |  | 
|  | } | 
|  | else { | 
|  | val = strtod(digits_pos, &fail_pos); | 
|  | } | 
|  |  | 
|  | if (fail_pos == digits_pos) | 
|  | goto invalid_string; | 
|  |  | 
|  | if (negate && fail_pos != nptr) | 
|  | val = -val; | 
|  | *endptr = fail_pos; | 
|  |  | 
|  | return val; | 
|  |  | 
|  | invalid_string: | 
|  | *endptr = (char*)nptr; | 
|  | errno = EINVAL; | 
|  | return -1.0; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* PyOS_ascii_strtod is DEPRECATED in Python 2.7 and 3.1 */ | 
|  |  | 
|  | double | 
|  | PyOS_ascii_strtod(const char *nptr, char **endptr) | 
|  | { | 
|  | char *fail_pos; | 
|  | const char *p; | 
|  | double x; | 
|  |  | 
|  | if (PyErr_WarnEx(PyExc_DeprecationWarning, | 
|  | "PyOS_ascii_strtod and PyOS_ascii_atof are " | 
|  | "deprecated.  Use PyOS_string_to_double " | 
|  | "instead.", 1) < 0) | 
|  | return -1.0; | 
|  |  | 
|  | /* _PyOS_ascii_strtod already does everything that we want, | 
|  | except that it doesn't parse leading whitespace */ | 
|  | p = nptr; | 
|  | while (Py_ISSPACE(*p)) | 
|  | p++; | 
|  | x = _PyOS_ascii_strtod(p, &fail_pos); | 
|  | if (fail_pos == p) | 
|  | fail_pos = (char *)nptr; | 
|  | if (endptr) | 
|  | *endptr = (char *)fail_pos; | 
|  | return x; | 
|  | } | 
|  |  | 
|  | /* PyOS_ascii_strtod is DEPRECATED in Python 2.7 and 3.1 */ | 
|  |  | 
|  | double | 
|  | PyOS_ascii_atof(const char *nptr) | 
|  | { | 
|  | return PyOS_ascii_strtod(nptr, NULL); | 
|  | } | 
|  |  | 
|  | /* PyOS_string_to_double is the recommended replacement for the deprecated | 
|  | PyOS_ascii_strtod and PyOS_ascii_atof functions.  It converts a | 
|  | null-terminated byte string s (interpreted as a string of ASCII characters) | 
|  | to a float.  The string should not have leading or trailing whitespace (in | 
|  | contrast, PyOS_ascii_strtod allows leading whitespace but not trailing | 
|  | whitespace).  The conversion is independent of the current locale. | 
|  |  | 
|  | If endptr is NULL, try to convert the whole string.  Raise ValueError and | 
|  | return -1.0 if the string is not a valid representation of a floating-point | 
|  | number. | 
|  |  | 
|  | If endptr is non-NULL, try to convert as much of the string as possible. | 
|  | If no initial segment of the string is the valid representation of a | 
|  | floating-point number then *endptr is set to point to the beginning of the | 
|  | string, -1.0 is returned and again ValueError is raised. | 
|  |  | 
|  | On overflow (e.g., when trying to convert '1e500' on an IEEE 754 machine), | 
|  | if overflow_exception is NULL then +-Py_HUGE_VAL is returned, and no Python | 
|  | exception is raised.  Otherwise, overflow_exception should point to | 
|  | a Python exception, this exception will be raised, -1.0 will be returned, | 
|  | and *endptr will point just past the end of the converted value. | 
|  |  | 
|  | If any other failure occurs (for example lack of memory), -1.0 is returned | 
|  | and the appropriate Python exception will have been set. | 
|  | */ | 
|  |  | 
|  | double | 
|  | PyOS_string_to_double(const char *s, | 
|  | char **endptr, | 
|  | PyObject *overflow_exception) | 
|  | { | 
|  | double x, result=-1.0; | 
|  | char *fail_pos; | 
|  |  | 
|  | errno = 0; | 
|  | PyFPE_START_PROTECT("PyOS_string_to_double", return -1.0) | 
|  | x = _PyOS_ascii_strtod(s, &fail_pos); | 
|  | PyFPE_END_PROTECT(x) | 
|  |  | 
|  | if (errno == ENOMEM) { | 
|  | PyErr_NoMemory(); | 
|  | fail_pos = (char *)s; | 
|  | } | 
|  | else if (!endptr && (fail_pos == s || *fail_pos != '\0')) | 
|  | PyErr_Format(PyExc_ValueError, | 
|  | "could not convert string to float: " | 
|  | "%.200s", s); | 
|  | else if (fail_pos == s) | 
|  | PyErr_Format(PyExc_ValueError, | 
|  | "could not convert string to float: " | 
|  | "%.200s", s); | 
|  | else if (errno == ERANGE && fabs(x) >= 1.0 && overflow_exception) | 
|  | PyErr_Format(overflow_exception, | 
|  | "value too large to convert to float: " | 
|  | "%.200s", s); | 
|  | else | 
|  | result = x; | 
|  |  | 
|  | if (endptr != NULL) | 
|  | *endptr = fail_pos; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Given a string that may have a decimal point in the current | 
|  | locale, change it back to a dot.  Since the string cannot get | 
|  | longer, no need for a maximum buffer size parameter. */ | 
|  | Py_LOCAL_INLINE(void) | 
|  | change_decimal_from_locale_to_dot(char* buffer) | 
|  | { | 
|  | struct lconv *locale_data = localeconv(); | 
|  | const char *decimal_point = locale_data->decimal_point; | 
|  |  | 
|  | if (decimal_point[0] != '.' || decimal_point[1] != 0) { | 
|  | size_t decimal_point_len = strlen(decimal_point); | 
|  |  | 
|  | if (*buffer == '+' || *buffer == '-') | 
|  | buffer++; | 
|  | while (Py_ISDIGIT(*buffer)) | 
|  | buffer++; | 
|  | if (strncmp(buffer, decimal_point, decimal_point_len) == 0) { | 
|  | *buffer = '.'; | 
|  | buffer++; | 
|  | if (decimal_point_len > 1) { | 
|  | /* buffer needs to get smaller */ | 
|  | size_t rest_len = strlen(buffer + | 
|  | (decimal_point_len - 1)); | 
|  | memmove(buffer, | 
|  | buffer + (decimal_point_len - 1), | 
|  | rest_len); | 
|  | buffer[rest_len] = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* From the C99 standard, section 7.19.6: | 
|  | The exponent always contains at least two digits, and only as many more digits | 
|  | as necessary to represent the exponent. | 
|  | */ | 
|  | #define MIN_EXPONENT_DIGITS 2 | 
|  |  | 
|  | /* Ensure that any exponent, if present, is at least MIN_EXPONENT_DIGITS | 
|  | in length. */ | 
|  | Py_LOCAL_INLINE(void) | 
|  | ensure_minimum_exponent_length(char* buffer, size_t buf_size) | 
|  | { | 
|  | char *p = strpbrk(buffer, "eE"); | 
|  | if (p && (*(p + 1) == '-' || *(p + 1) == '+')) { | 
|  | char *start = p + 2; | 
|  | int exponent_digit_cnt = 0; | 
|  | int leading_zero_cnt = 0; | 
|  | int in_leading_zeros = 1; | 
|  | int significant_digit_cnt; | 
|  |  | 
|  | /* Skip over the exponent and the sign. */ | 
|  | p += 2; | 
|  |  | 
|  | /* Find the end of the exponent, keeping track of leading | 
|  | zeros. */ | 
|  | while (*p && Py_ISDIGIT(*p)) { | 
|  | if (in_leading_zeros && *p == '0') | 
|  | ++leading_zero_cnt; | 
|  | if (*p != '0') | 
|  | in_leading_zeros = 0; | 
|  | ++p; | 
|  | ++exponent_digit_cnt; | 
|  | } | 
|  |  | 
|  | significant_digit_cnt = exponent_digit_cnt - leading_zero_cnt; | 
|  | if (exponent_digit_cnt == MIN_EXPONENT_DIGITS) { | 
|  | /* If there are 2 exactly digits, we're done, | 
|  | regardless of what they contain */ | 
|  | } | 
|  | else if (exponent_digit_cnt > MIN_EXPONENT_DIGITS) { | 
|  | int extra_zeros_cnt; | 
|  |  | 
|  | /* There are more than 2 digits in the exponent.  See | 
|  | if we can delete some of the leading zeros */ | 
|  | if (significant_digit_cnt < MIN_EXPONENT_DIGITS) | 
|  | significant_digit_cnt = MIN_EXPONENT_DIGITS; | 
|  | extra_zeros_cnt = exponent_digit_cnt - | 
|  | significant_digit_cnt; | 
|  |  | 
|  | /* Delete extra_zeros_cnt worth of characters from the | 
|  | front of the exponent */ | 
|  | assert(extra_zeros_cnt >= 0); | 
|  |  | 
|  | /* Add one to significant_digit_cnt to copy the | 
|  | trailing 0 byte, thus setting the length */ | 
|  | memmove(start, | 
|  | start + extra_zeros_cnt, | 
|  | significant_digit_cnt + 1); | 
|  | } | 
|  | else { | 
|  | /* If there are fewer than 2 digits, add zeros | 
|  | until there are 2, if there's enough room */ | 
|  | int zeros = MIN_EXPONENT_DIGITS - exponent_digit_cnt; | 
|  | if (start + zeros + exponent_digit_cnt + 1 | 
|  | < buffer + buf_size) { | 
|  | memmove(start + zeros, start, | 
|  | exponent_digit_cnt + 1); | 
|  | memset(start, '0', zeros); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Remove trailing zeros after the decimal point from a numeric string; also | 
|  | remove the decimal point if all digits following it are zero.  The numeric | 
|  | string must end in '\0', and should not have any leading or trailing | 
|  | whitespace.  Assumes that the decimal point is '.'. */ | 
|  | Py_LOCAL_INLINE(void) | 
|  | remove_trailing_zeros(char *buffer) | 
|  | { | 
|  | char *old_fraction_end, *new_fraction_end, *end, *p; | 
|  |  | 
|  | p = buffer; | 
|  | if (*p == '-' || *p == '+') | 
|  | /* Skip leading sign, if present */ | 
|  | ++p; | 
|  | while (Py_ISDIGIT(*p)) | 
|  | ++p; | 
|  |  | 
|  | /* if there's no decimal point there's nothing to do */ | 
|  | if (*p++ != '.') | 
|  | return; | 
|  |  | 
|  | /* scan any digits after the point */ | 
|  | while (Py_ISDIGIT(*p)) | 
|  | ++p; | 
|  | old_fraction_end = p; | 
|  |  | 
|  | /* scan up to ending '\0' */ | 
|  | while (*p != '\0') | 
|  | p++; | 
|  | /* +1 to make sure that we move the null byte as well */ | 
|  | end = p+1; | 
|  |  | 
|  | /* scan back from fraction_end, looking for removable zeros */ | 
|  | p = old_fraction_end; | 
|  | while (*(p-1) == '0') | 
|  | --p; | 
|  | /* and remove point if we've got that far */ | 
|  | if (*(p-1) == '.') | 
|  | --p; | 
|  | new_fraction_end = p; | 
|  |  | 
|  | memmove(new_fraction_end, old_fraction_end, end-old_fraction_end); | 
|  | } | 
|  |  | 
|  | /* Ensure that buffer has a decimal point in it.  The decimal point will not | 
|  | be in the current locale, it will always be '.'. Don't add a decimal point | 
|  | if an exponent is present.  Also, convert to exponential notation where | 
|  | adding a '.0' would produce too many significant digits (see issue 5864). | 
|  |  | 
|  | Returns a pointer to the fixed buffer, or NULL on failure. | 
|  | */ | 
|  | Py_LOCAL_INLINE(char *) | 
|  | ensure_decimal_point(char* buffer, size_t buf_size, int precision) | 
|  | { | 
|  | int digit_count, insert_count = 0, convert_to_exp = 0; | 
|  | char *chars_to_insert, *digits_start; | 
|  |  | 
|  | /* search for the first non-digit character */ | 
|  | char *p = buffer; | 
|  | if (*p == '-' || *p == '+') | 
|  | /* Skip leading sign, if present.  I think this could only | 
|  | ever be '-', but it can't hurt to check for both. */ | 
|  | ++p; | 
|  | digits_start = p; | 
|  | while (*p && Py_ISDIGIT(*p)) | 
|  | ++p; | 
|  | digit_count = Py_SAFE_DOWNCAST(p - digits_start, Py_ssize_t, int); | 
|  |  | 
|  | if (*p == '.') { | 
|  | if (Py_ISDIGIT(*(p+1))) { | 
|  | /* Nothing to do, we already have a decimal | 
|  | point and a digit after it */ | 
|  | } | 
|  | else { | 
|  | /* We have a decimal point, but no following | 
|  | digit.  Insert a zero after the decimal. */ | 
|  | /* can't ever get here via PyOS_double_to_string */ | 
|  | assert(precision == -1); | 
|  | ++p; | 
|  | chars_to_insert = "0"; | 
|  | insert_count = 1; | 
|  | } | 
|  | } | 
|  | else if (!(*p == 'e' || *p == 'E')) { | 
|  | /* Don't add ".0" if we have an exponent. */ | 
|  | if (digit_count == precision) { | 
|  | /* issue 5864: don't add a trailing .0 in the case | 
|  | where the '%g'-formatted result already has as many | 
|  | significant digits as were requested.  Switch to | 
|  | exponential notation instead. */ | 
|  | convert_to_exp = 1; | 
|  | /* no exponent, no point, and we shouldn't land here | 
|  | for infs and nans, so we must be at the end of the | 
|  | string. */ | 
|  | assert(*p == '\0'); | 
|  | } | 
|  | else { | 
|  | assert(precision == -1 || digit_count < precision); | 
|  | chars_to_insert = ".0"; | 
|  | insert_count = 2; | 
|  | } | 
|  | } | 
|  | if (insert_count) { | 
|  | size_t buf_len = strlen(buffer); | 
|  | if (buf_len + insert_count + 1 >= buf_size) { | 
|  | /* If there is not enough room in the buffer | 
|  | for the additional text, just skip it.  It's | 
|  | not worth generating an error over. */ | 
|  | } | 
|  | else { | 
|  | memmove(p + insert_count, p, | 
|  | buffer + strlen(buffer) - p + 1); | 
|  | memcpy(p, chars_to_insert, insert_count); | 
|  | } | 
|  | } | 
|  | if (convert_to_exp) { | 
|  | int written; | 
|  | size_t buf_avail; | 
|  | p = digits_start; | 
|  | /* insert decimal point */ | 
|  | assert(digit_count >= 1); | 
|  | memmove(p+2, p+1, digit_count); /* safe, but overwrites nul */ | 
|  | p[1] = '.'; | 
|  | p += digit_count+1; | 
|  | assert(p <= buf_size+buffer); | 
|  | buf_avail = buf_size+buffer-p; | 
|  | if (buf_avail == 0) | 
|  | return NULL; | 
|  | /* Add exponent.  It's okay to use lower case 'e': we only | 
|  | arrive here as a result of using the empty format code or | 
|  | repr/str builtins and those never want an upper case 'E' */ | 
|  | written = PyOS_snprintf(p, buf_avail, "e%+.02d", digit_count-1); | 
|  | if (!(0 <= written && | 
|  | written < Py_SAFE_DOWNCAST(buf_avail, size_t, int))) | 
|  | /* output truncated, or something else bad happened */ | 
|  | return NULL; | 
|  | remove_trailing_zeros(buffer); | 
|  | } | 
|  | return buffer; | 
|  | } | 
|  |  | 
|  | /* see FORMATBUFLEN in unicodeobject.c */ | 
|  | #define FLOAT_FORMATBUFLEN 120 | 
|  |  | 
|  | /** | 
|  | * PyOS_ascii_formatd: | 
|  | * @buffer: A buffer to place the resulting string in | 
|  | * @buf_size: The length of the buffer. | 
|  | * @format: The printf()-style format to use for the | 
|  | *          code to use for converting. | 
|  | * @d: The #gdouble to convert | 
|  | * | 
|  | * Converts a #gdouble to a string, using the '.' as | 
|  | * decimal point. To format the number you pass in | 
|  | * a printf()-style format string. Allowed conversion | 
|  | * specifiers are 'e', 'E', 'f', 'F', 'g', 'G', and 'Z'. | 
|  | * | 
|  | * 'Z' is the same as 'g', except it always has a decimal and | 
|  | *     at least one digit after the decimal. | 
|  | * | 
|  | * Return value: The pointer to the buffer with the converted string. | 
|  | * On failure returns NULL but does not set any Python exception. | 
|  | **/ | 
|  | char * | 
|  | _PyOS_ascii_formatd(char       *buffer, | 
|  | size_t      buf_size, | 
|  | const char *format, | 
|  | double      d, | 
|  | int         precision) | 
|  | { | 
|  | char format_char; | 
|  | size_t format_len = strlen(format); | 
|  |  | 
|  | /* Issue 2264: code 'Z' requires copying the format.  'Z' is 'g', but | 
|  | also with at least one character past the decimal. */ | 
|  | char tmp_format[FLOAT_FORMATBUFLEN]; | 
|  |  | 
|  | /* The last character in the format string must be the format char */ | 
|  | format_char = format[format_len - 1]; | 
|  |  | 
|  | if (format[0] != '%') | 
|  | return NULL; | 
|  |  | 
|  | /* I'm not sure why this test is here.  It's ensuring that the format | 
|  | string after the first character doesn't have a single quote, a | 
|  | lowercase l, or a percent. This is the reverse of the commented-out | 
|  | test about 10 lines ago. */ | 
|  | if (strpbrk(format + 1, "'l%")) | 
|  | return NULL; | 
|  |  | 
|  | /* Also curious about this function is that it accepts format strings | 
|  | like "%xg", which are invalid for floats.  In general, the | 
|  | interface to this function is not very good, but changing it is | 
|  | difficult because it's a public API. */ | 
|  |  | 
|  | if (!(format_char == 'e' || format_char == 'E' || | 
|  | format_char == 'f' || format_char == 'F' || | 
|  | format_char == 'g' || format_char == 'G' || | 
|  | format_char == 'Z')) | 
|  | return NULL; | 
|  |  | 
|  | /* Map 'Z' format_char to 'g', by copying the format string and | 
|  | replacing the final char with a 'g' */ | 
|  | if (format_char == 'Z') { | 
|  | if (format_len + 1 >= sizeof(tmp_format)) { | 
|  | /* The format won't fit in our copy.  Error out.  In | 
|  | practice, this will never happen and will be | 
|  | detected by returning NULL */ | 
|  | return NULL; | 
|  | } | 
|  | strcpy(tmp_format, format); | 
|  | tmp_format[format_len - 1] = 'g'; | 
|  | format = tmp_format; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Have PyOS_snprintf do the hard work */ | 
|  | PyOS_snprintf(buffer, buf_size, format, d); | 
|  |  | 
|  | /* Do various fixups on the return string */ | 
|  |  | 
|  | /* Get the current locale, and find the decimal point string. | 
|  | Convert that string back to a dot. */ | 
|  | change_decimal_from_locale_to_dot(buffer); | 
|  |  | 
|  | /* If an exponent exists, ensure that the exponent is at least | 
|  | MIN_EXPONENT_DIGITS digits, providing the buffer is large enough | 
|  | for the extra zeros.  Also, if there are more than | 
|  | MIN_EXPONENT_DIGITS, remove as many zeros as possible until we get | 
|  | back to MIN_EXPONENT_DIGITS */ | 
|  | ensure_minimum_exponent_length(buffer, buf_size); | 
|  |  | 
|  | /* If format_char is 'Z', make sure we have at least one character | 
|  | after the decimal point (and make sure we have a decimal point); | 
|  | also switch to exponential notation in some edge cases where the | 
|  | extra character would produce more significant digits that we | 
|  | really want. */ | 
|  | if (format_char == 'Z') | 
|  | buffer = ensure_decimal_point(buffer, buf_size, precision); | 
|  |  | 
|  | return buffer; | 
|  | } | 
|  |  | 
|  | char * | 
|  | PyOS_ascii_formatd(char       *buffer, | 
|  | size_t      buf_size, | 
|  | const char *format, | 
|  | double      d) | 
|  | { | 
|  | if (PyErr_WarnEx(PyExc_DeprecationWarning, | 
|  | "PyOS_ascii_formatd is deprecated, " | 
|  | "use PyOS_double_to_string instead", 1) < 0) | 
|  | return NULL; | 
|  |  | 
|  | return _PyOS_ascii_formatd(buffer, buf_size, format, d, -1); | 
|  | } | 
|  |  | 
|  | #ifdef PY_NO_SHORT_FLOAT_REPR | 
|  |  | 
|  | /* The fallback code to use if _Py_dg_dtoa is not available. */ | 
|  |  | 
|  | PyAPI_FUNC(char *) PyOS_double_to_string(double val, | 
|  | char format_code, | 
|  | int precision, | 
|  | int flags, | 
|  | int *type) | 
|  | { | 
|  | char format[32]; | 
|  | Py_ssize_t bufsize; | 
|  | char *buf; | 
|  | int t, exp; | 
|  | int upper = 0; | 
|  |  | 
|  | /* Validate format_code, and map upper and lower case */ | 
|  | switch (format_code) { | 
|  | case 'e':          /* exponent */ | 
|  | case 'f':          /* fixed */ | 
|  | case 'g':          /* general */ | 
|  | break; | 
|  | case 'E': | 
|  | upper = 1; | 
|  | format_code = 'e'; | 
|  | break; | 
|  | case 'F': | 
|  | upper = 1; | 
|  | format_code = 'f'; | 
|  | break; | 
|  | case 'G': | 
|  | upper = 1; | 
|  | format_code = 'g'; | 
|  | break; | 
|  | case 'r':          /* repr format */ | 
|  | /* Supplied precision is unused, must be 0. */ | 
|  | if (precision != 0) { | 
|  | PyErr_BadInternalCall(); | 
|  | return NULL; | 
|  | } | 
|  | /* The repr() precision (17 significant decimal digits) is the | 
|  | minimal number that is guaranteed to have enough precision | 
|  | so that if the number is read back in the exact same binary | 
|  | value is recreated.  This is true for IEEE floating point | 
|  | by design, and also happens to work for all other modern | 
|  | hardware. */ | 
|  | precision = 17; | 
|  | format_code = 'g'; | 
|  | break; | 
|  | default: | 
|  | PyErr_BadInternalCall(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Here's a quick-and-dirty calculation to figure out how big a buffer | 
|  | we need.  In general, for a finite float we need: | 
|  |  | 
|  | 1 byte for each digit of the decimal significand, and | 
|  |  | 
|  | 1 for a possible sign | 
|  | 1 for a possible decimal point | 
|  | 2 for a possible [eE][+-] | 
|  | 1 for each digit of the exponent;  if we allow 19 digits | 
|  | total then we're safe up to exponents of 2**63. | 
|  | 1 for the trailing nul byte | 
|  |  | 
|  | This gives a total of 24 + the number of digits in the significand, | 
|  | and the number of digits in the significand is: | 
|  |  | 
|  | for 'g' format: at most precision, except possibly | 
|  | when precision == 0, when it's 1. | 
|  | for 'e' format: precision+1 | 
|  | for 'f' format: precision digits after the point, at least 1 | 
|  | before.  To figure out how many digits appear before the point | 
|  | we have to examine the size of the number.  If fabs(val) < 1.0 | 
|  | then there will be only one digit before the point.  If | 
|  | fabs(val) >= 1.0, then there are at most | 
|  |  | 
|  | 1+floor(log10(ceiling(fabs(val)))) | 
|  |  | 
|  | digits before the point (where the 'ceiling' allows for the | 
|  | possibility that the rounding rounds the integer part of val | 
|  | up).  A safe upper bound for the above quantity is | 
|  | 1+floor(exp/3), where exp is the unique integer such that 0.5 | 
|  | <= fabs(val)/2**exp < 1.0.  This exp can be obtained from | 
|  | frexp. | 
|  |  | 
|  | So we allow room for precision+1 digits for all formats, plus an | 
|  | extra floor(exp/3) digits for 'f' format. | 
|  |  | 
|  | */ | 
|  |  | 
|  | if (Py_IS_NAN(val) || Py_IS_INFINITY(val)) | 
|  | /* 3 for 'inf'/'nan', 1 for sign, 1 for '\0' */ | 
|  | bufsize = 5; | 
|  | else { | 
|  | bufsize = 25 + precision; | 
|  | if (format_code == 'f' && fabs(val) >= 1.0) { | 
|  | frexp(val, &exp); | 
|  | bufsize += exp/3; | 
|  | } | 
|  | } | 
|  |  | 
|  | buf = PyMem_Malloc(bufsize); | 
|  | if (buf == NULL) { | 
|  | PyErr_NoMemory(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Handle nan and inf. */ | 
|  | if (Py_IS_NAN(val)) { | 
|  | strcpy(buf, "nan"); | 
|  | t = Py_DTST_NAN; | 
|  | } else if (Py_IS_INFINITY(val)) { | 
|  | if (copysign(1., val) == 1.) | 
|  | strcpy(buf, "inf"); | 
|  | else | 
|  | strcpy(buf, "-inf"); | 
|  | t = Py_DTST_INFINITE; | 
|  | } else { | 
|  | t = Py_DTST_FINITE; | 
|  | if (flags & Py_DTSF_ADD_DOT_0) | 
|  | format_code = 'Z'; | 
|  |  | 
|  | PyOS_snprintf(format, sizeof(format), "%%%s.%i%c", | 
|  | (flags & Py_DTSF_ALT ? "#" : ""), precision, | 
|  | format_code); | 
|  | _PyOS_ascii_formatd(buf, bufsize, format, val, precision); | 
|  | } | 
|  |  | 
|  | /* Add sign when requested.  It's convenient (esp. when formatting | 
|  | complex numbers) to include a sign even for inf and nan. */ | 
|  | if (flags & Py_DTSF_SIGN && buf[0] != '-') { | 
|  | size_t len = strlen(buf); | 
|  | /* the bufsize calculations above should ensure that we've got | 
|  | space to add a sign */ | 
|  | assert((size_t)bufsize >= len+2); | 
|  | memmove(buf+1, buf, len+1); | 
|  | buf[0] = '+'; | 
|  | } | 
|  | if (upper) { | 
|  | /* Convert to upper case. */ | 
|  | char *p1; | 
|  | for (p1 = buf; *p1; p1++) | 
|  | *p1 = Py_TOUPPER(*p1); | 
|  | } | 
|  |  | 
|  | if (type) | 
|  | *type = t; | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | /* _Py_dg_dtoa is available. */ | 
|  |  | 
|  | /* I'm using a lookup table here so that I don't have to invent a non-locale | 
|  | specific way to convert to uppercase */ | 
|  | #define OFS_INF 0 | 
|  | #define OFS_NAN 1 | 
|  | #define OFS_E 2 | 
|  |  | 
|  | /* The lengths of these are known to the code below, so don't change them */ | 
|  | static char *lc_float_strings[] = { | 
|  | "inf", | 
|  | "nan", | 
|  | "e", | 
|  | }; | 
|  | static char *uc_float_strings[] = { | 
|  | "INF", | 
|  | "NAN", | 
|  | "E", | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* Convert a double d to a string, and return a PyMem_Malloc'd block of | 
|  | memory contain the resulting string. | 
|  |  | 
|  | Arguments: | 
|  | d is the double to be converted | 
|  | format_code is one of 'e', 'f', 'g', 'r'.  'e', 'f' and 'g' | 
|  | correspond to '%e', '%f' and '%g';  'r' corresponds to repr. | 
|  | mode is one of '0', '2' or '3', and is completely determined by | 
|  | format_code: 'e' and 'g' use mode 2; 'f' mode 3, 'r' mode 0. | 
|  | precision is the desired precision | 
|  | always_add_sign is nonzero if a '+' sign should be included for positive | 
|  | numbers | 
|  | add_dot_0_if_integer is nonzero if integers in non-exponential form | 
|  | should have ".0" added.  Only applies to format codes 'r' and 'g'. | 
|  | use_alt_formatting is nonzero if alternative formatting should be | 
|  | used.  Only applies to format codes 'e', 'f' and 'g'.  For code 'g', | 
|  | at most one of use_alt_formatting and add_dot_0_if_integer should | 
|  | be nonzero. | 
|  | type, if non-NULL, will be set to one of these constants to identify | 
|  | the type of the 'd' argument: | 
|  | Py_DTST_FINITE | 
|  | Py_DTST_INFINITE | 
|  | Py_DTST_NAN | 
|  |  | 
|  | Returns a PyMem_Malloc'd block of memory containing the resulting string, | 
|  | or NULL on error. If NULL is returned, the Python error has been set. | 
|  | */ | 
|  |  | 
|  | static char * | 
|  | format_float_short(double d, char format_code, | 
|  | int mode, Py_ssize_t precision, | 
|  | int always_add_sign, int add_dot_0_if_integer, | 
|  | int use_alt_formatting, char **float_strings, int *type) | 
|  | { | 
|  | char *buf = NULL; | 
|  | char *p = NULL; | 
|  | Py_ssize_t bufsize = 0; | 
|  | char *digits, *digits_end; | 
|  | int decpt_as_int, sign, exp_len, exp = 0, use_exp = 0; | 
|  | Py_ssize_t decpt, digits_len, vdigits_start, vdigits_end; | 
|  | _Py_SET_53BIT_PRECISION_HEADER; | 
|  |  | 
|  | /* _Py_dg_dtoa returns a digit string (no decimal point or exponent). | 
|  | Must be matched by a call to _Py_dg_freedtoa. */ | 
|  | _Py_SET_53BIT_PRECISION_START; | 
|  | digits = _Py_dg_dtoa(d, mode, precision, &decpt_as_int, &sign, | 
|  | &digits_end); | 
|  | _Py_SET_53BIT_PRECISION_END; | 
|  |  | 
|  | decpt = (Py_ssize_t)decpt_as_int; | 
|  | if (digits == NULL) { | 
|  | /* The only failure mode is no memory. */ | 
|  | PyErr_NoMemory(); | 
|  | goto exit; | 
|  | } | 
|  | assert(digits_end != NULL && digits_end >= digits); | 
|  | digits_len = digits_end - digits; | 
|  |  | 
|  | if (digits_len && !Py_ISDIGIT(digits[0])) { | 
|  | /* Infinities and nans here; adapt Gay's output, | 
|  | so convert Infinity to inf and NaN to nan, and | 
|  | ignore sign of nan. Then return. */ | 
|  |  | 
|  | /* ignore the actual sign of a nan */ | 
|  | if (digits[0] == 'n' || digits[0] == 'N') | 
|  | sign = 0; | 
|  |  | 
|  | /* We only need 5 bytes to hold the result "+inf\0" . */ | 
|  | bufsize = 5; /* Used later in an assert. */ | 
|  | buf = (char *)PyMem_Malloc(bufsize); | 
|  | if (buf == NULL) { | 
|  | PyErr_NoMemory(); | 
|  | goto exit; | 
|  | } | 
|  | p = buf; | 
|  |  | 
|  | if (sign == 1) { | 
|  | *p++ = '-'; | 
|  | } | 
|  | else if (always_add_sign) { | 
|  | *p++ = '+'; | 
|  | } | 
|  | if (digits[0] == 'i' || digits[0] == 'I') { | 
|  | strncpy(p, float_strings[OFS_INF], 3); | 
|  | p += 3; | 
|  |  | 
|  | if (type) | 
|  | *type = Py_DTST_INFINITE; | 
|  | } | 
|  | else if (digits[0] == 'n' || digits[0] == 'N') { | 
|  | strncpy(p, float_strings[OFS_NAN], 3); | 
|  | p += 3; | 
|  |  | 
|  | if (type) | 
|  | *type = Py_DTST_NAN; | 
|  | } | 
|  | else { | 
|  | /* shouldn't get here: Gay's code should always return | 
|  | something starting with a digit, an 'I',  or 'N' */ | 
|  | strncpy(p, "ERR", 3); | 
|  | p += 3; | 
|  | assert(0); | 
|  | } | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | /* The result must be finite (not inf or nan). */ | 
|  | if (type) | 
|  | *type = Py_DTST_FINITE; | 
|  |  | 
|  |  | 
|  | /* We got digits back, format them.  We may need to pad 'digits' | 
|  | either on the left or right (or both) with extra zeros, so in | 
|  | general the resulting string has the form | 
|  |  | 
|  | [<sign>]<zeros><digits><zeros>[<exponent>] | 
|  |  | 
|  | where either of the <zeros> pieces could be empty, and there's a | 
|  | decimal point that could appear either in <digits> or in the | 
|  | leading or trailing <zeros>. | 
|  |  | 
|  | Imagine an infinite 'virtual' string vdigits, consisting of the | 
|  | string 'digits' (starting at index 0) padded on both the left and | 
|  | right with infinite strings of zeros.  We want to output a slice | 
|  |  | 
|  | vdigits[vdigits_start : vdigits_end] | 
|  |  | 
|  | of this virtual string.  Thus if vdigits_start < 0 then we'll end | 
|  | up producing some leading zeros; if vdigits_end > digits_len there | 
|  | will be trailing zeros in the output.  The next section of code | 
|  | determines whether to use an exponent or not, figures out the | 
|  | position 'decpt' of the decimal point, and computes 'vdigits_start' | 
|  | and 'vdigits_end'. */ | 
|  | vdigits_end = digits_len; | 
|  | switch (format_code) { | 
|  | case 'e': | 
|  | use_exp = 1; | 
|  | vdigits_end = precision; | 
|  | break; | 
|  | case 'f': | 
|  | vdigits_end = decpt + precision; | 
|  | break; | 
|  | case 'g': | 
|  | if (decpt <= -4 || decpt > | 
|  | (add_dot_0_if_integer ? precision-1 : precision)) | 
|  | use_exp = 1; | 
|  | if (use_alt_formatting) | 
|  | vdigits_end = precision; | 
|  | break; | 
|  | case 'r': | 
|  | /* convert to exponential format at 1e16.  We used to convert | 
|  | at 1e17, but that gives odd-looking results for some values | 
|  | when a 16-digit 'shortest' repr is padded with bogus zeros. | 
|  | For example, repr(2e16+8) would give 20000000000000010.0; | 
|  | the true value is 20000000000000008.0. */ | 
|  | if (decpt <= -4 || decpt > 16) | 
|  | use_exp = 1; | 
|  | break; | 
|  | default: | 
|  | PyErr_BadInternalCall(); | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | /* if using an exponent, reset decimal point position to 1 and adjust | 
|  | exponent accordingly.*/ | 
|  | if (use_exp) { | 
|  | exp = decpt - 1; | 
|  | decpt = 1; | 
|  | } | 
|  | /* ensure vdigits_start < decpt <= vdigits_end, or vdigits_start < | 
|  | decpt < vdigits_end if add_dot_0_if_integer and no exponent */ | 
|  | vdigits_start = decpt <= 0 ? decpt-1 : 0; | 
|  | if (!use_exp && add_dot_0_if_integer) | 
|  | vdigits_end = vdigits_end > decpt ? vdigits_end : decpt + 1; | 
|  | else | 
|  | vdigits_end = vdigits_end > decpt ? vdigits_end : decpt; | 
|  |  | 
|  | /* double check inequalities */ | 
|  | assert(vdigits_start <= 0 && | 
|  | 0 <= digits_len && | 
|  | digits_len <= vdigits_end); | 
|  | /* decimal point should be in (vdigits_start, vdigits_end] */ | 
|  | assert(vdigits_start < decpt && decpt <= vdigits_end); | 
|  |  | 
|  | /* Compute an upper bound how much memory we need. This might be a few | 
|  | chars too long, but no big deal. */ | 
|  | bufsize = | 
|  | /* sign, decimal point and trailing 0 byte */ | 
|  | 3 + | 
|  |  | 
|  | /* total digit count (including zero padding on both sides) */ | 
|  | (vdigits_end - vdigits_start) + | 
|  |  | 
|  | /* exponent "e+100", max 3 numerical digits */ | 
|  | (use_exp ? 5 : 0); | 
|  |  | 
|  | /* Now allocate the memory and initialize p to point to the start of | 
|  | it. */ | 
|  | buf = (char *)PyMem_Malloc(bufsize); | 
|  | if (buf == NULL) { | 
|  | PyErr_NoMemory(); | 
|  | goto exit; | 
|  | } | 
|  | p = buf; | 
|  |  | 
|  | /* Add a negative sign if negative, and a plus sign if non-negative | 
|  | and always_add_sign is true. */ | 
|  | if (sign == 1) | 
|  | *p++ = '-'; | 
|  | else if (always_add_sign) | 
|  | *p++ = '+'; | 
|  |  | 
|  | /* note that exactly one of the three 'if' conditions is true, | 
|  | so we include exactly one decimal point */ | 
|  | /* Zero padding on left of digit string */ | 
|  | if (decpt <= 0) { | 
|  | memset(p, '0', decpt-vdigits_start); | 
|  | p += decpt - vdigits_start; | 
|  | *p++ = '.'; | 
|  | memset(p, '0', 0-decpt); | 
|  | p += 0-decpt; | 
|  | } | 
|  | else { | 
|  | memset(p, '0', 0-vdigits_start); | 
|  | p += 0 - vdigits_start; | 
|  | } | 
|  |  | 
|  | /* Digits, with included decimal point */ | 
|  | if (0 < decpt && decpt <= digits_len) { | 
|  | strncpy(p, digits, decpt-0); | 
|  | p += decpt-0; | 
|  | *p++ = '.'; | 
|  | strncpy(p, digits+decpt, digits_len-decpt); | 
|  | p += digits_len-decpt; | 
|  | } | 
|  | else { | 
|  | strncpy(p, digits, digits_len); | 
|  | p += digits_len; | 
|  | } | 
|  |  | 
|  | /* And zeros on the right */ | 
|  | if (digits_len < decpt) { | 
|  | memset(p, '0', decpt-digits_len); | 
|  | p += decpt-digits_len; | 
|  | *p++ = '.'; | 
|  | memset(p, '0', vdigits_end-decpt); | 
|  | p += vdigits_end-decpt; | 
|  | } | 
|  | else { | 
|  | memset(p, '0', vdigits_end-digits_len); | 
|  | p += vdigits_end-digits_len; | 
|  | } | 
|  |  | 
|  | /* Delete a trailing decimal pt unless using alternative formatting. */ | 
|  | if (p[-1] == '.' && !use_alt_formatting) | 
|  | p--; | 
|  |  | 
|  | /* Now that we've done zero padding, add an exponent if needed. */ | 
|  | if (use_exp) { | 
|  | *p++ = float_strings[OFS_E][0]; | 
|  | exp_len = sprintf(p, "%+.02d", exp); | 
|  | p += exp_len; | 
|  | } | 
|  | exit: | 
|  | if (buf) { | 
|  | *p = '\0'; | 
|  | /* It's too late if this fails, as we've already stepped on | 
|  | memory that isn't ours. But it's an okay debugging test. */ | 
|  | assert(p-buf < bufsize); | 
|  | } | 
|  | if (digits) | 
|  | _Py_dg_freedtoa(digits); | 
|  |  | 
|  | return buf; | 
|  | } | 
|  |  | 
|  |  | 
|  | PyAPI_FUNC(char *) PyOS_double_to_string(double val, | 
|  | char format_code, | 
|  | int precision, | 
|  | int flags, | 
|  | int *type) | 
|  | { | 
|  | char **float_strings = lc_float_strings; | 
|  | int mode; | 
|  |  | 
|  | /* Validate format_code, and map upper and lower case. Compute the | 
|  | mode and make any adjustments as needed. */ | 
|  | switch (format_code) { | 
|  | /* exponent */ | 
|  | case 'E': | 
|  | float_strings = uc_float_strings; | 
|  | format_code = 'e'; | 
|  | /* Fall through. */ | 
|  | case 'e': | 
|  | mode = 2; | 
|  | precision++; | 
|  | break; | 
|  |  | 
|  | /* fixed */ | 
|  | case 'F': | 
|  | float_strings = uc_float_strings; | 
|  | format_code = 'f'; | 
|  | /* Fall through. */ | 
|  | case 'f': | 
|  | mode = 3; | 
|  | break; | 
|  |  | 
|  | /* general */ | 
|  | case 'G': | 
|  | float_strings = uc_float_strings; | 
|  | format_code = 'g'; | 
|  | /* Fall through. */ | 
|  | case 'g': | 
|  | mode = 2; | 
|  | /* precision 0 makes no sense for 'g' format; interpret as 1 */ | 
|  | if (precision == 0) | 
|  | precision = 1; | 
|  | break; | 
|  |  | 
|  | /* repr format */ | 
|  | case 'r': | 
|  | mode = 0; | 
|  | /* Supplied precision is unused, must be 0. */ | 
|  | if (precision != 0) { | 
|  | PyErr_BadInternalCall(); | 
|  | return NULL; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | PyErr_BadInternalCall(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return format_float_short(val, format_code, mode, precision, | 
|  | flags & Py_DTSF_SIGN, | 
|  | flags & Py_DTSF_ADD_DOT_0, | 
|  | flags & Py_DTSF_ALT, | 
|  | float_strings, type); | 
|  | } | 
|  | #endif /* ifdef PY_NO_SHORT_FLOAT_REPR */ |