1

I am making a Dollar Cost Average code where I want to choose between 2 equations. I made an excel spreadsheet that I'm trying to portover to python. I've gotten pretty far except for the last step. The last step has had me searching for a solution for 3 weeks now. The errors happen when I try a for loop in a df when looping through. I would like to check a column with an if the statement. If is true then do an equation if false do another equation. I can get the for loop to work and I can the if statements to work, but not combined. See all commented out code for whats been tried. I have tried np.where instead of the if statements as well. I have tried .loc. I have tried lamda. I have tried list comp. Nothing is working please help. FYI the code referring is ['trend bal'] column. ***see end with correct code.

What the df looks like:

    Index   timestamp         Open         High          Low  ...      rate  account bal  invested ST_10_1.0  if trend
0       0   8/16/2021  4382.439941  4444.350098  4367.729980  ...  1.000000  $10,000.00      10000         1         0
1       1   8/23/2021  4450.290039  4513.330078  4450.290039  ...  0.015242  $10,252.42      10100         1         0
2       2   8/30/2021  4513.759766  4545.850098  4513.759766  ...  0.005779  $10,411.67      10200         1         0
3       3    9/6/2021  4535.379883  4535.379883  4457.660156  ... -0.016944  $10,335.25      10300         1         0
4       4   9/13/2021  4474.810059  4492.990234  4427.759766  ... -0.005739  $10,375.93      10400         1         0
5       5   9/20/2021  4402.950195  4465.399902  4305.910156  ...  0.005073  $10,528.57      10500         1         0
6       6   9/27/2021  4442.120117  4457.299805  4288.520020  ... -0.022094  $10,395.95      10600         1         0
7       7   10/4/2021  4348.839844  4429.970215  4278.939941  ...  0.007872  $10,577.79      10700         1         0
8       8  10/11/2021  4385.439941  4475.819824  4329.919922  ...  0.018225  $10,870.57      10800         1         0
9       9  10/18/2021  4463.720215  4559.669922  4447.470215  ...  0.016445  $11,149.33      10900         1         0
10     10  10/25/2021  4553.689941  4608.080078  4537.359863  ...  0.013307  $11,397.70      11000         1         0
11     11   11/1/2021  4610.620117  4718.500000  4595.060059  ...  0.020009  $11,725.75      11100         1         0
12     12   11/8/2021  4701.479980  4714.919922  4630.859863  ... -0.003125  $11,789.11      11200         1         0
13     13  11/15/2021  4689.299805  4717.750000  4672.779785  ...  0.003227  $11,927.15      11300         1         0
14     14  11/22/2021  4712.000000  4743.830078  4585.430176  ... -0.021997  $11,764.79      11400         1         0
15     15  11/29/2021  4628.750000  4672.950195  4495.120117  ... -0.012230  $11,720.92      11500        -1       100
16     16   12/6/2021  4548.370117  4713.569824  4540.509766  ...  0.038249  $12,269.23      11600        -1       100
17     17  12/13/2021  4710.299805  4731.990234  4600.220215  ... -0.019393  $12,131.29      11700         1         0
18     18  12/20/2021  4587.899902  4740.740234  4531.100098  ...  0.022757  $12,507.36      11800         1         0
19     19  12/27/2021  4733.990234  4808.930176  4733.990234  ...  0.008547  $12,714.25      11900         1         0
20     20    1/3/2022  4778.140137  4818.620117  4662.740234  ... -0.018705  $12,576.44      12000         1         0
21     21   1/10/2022  4655.339844  4748.830078  4582.240234  ... -0.003032  $12,638.31      12100         1         0
22     22   1/17/2022  4632.240234  4632.240234  4395.339844  ... -0.056813  $12,020.29      12200         1         0
23     23   1/24/2022  4356.319824  4453.229980  4222.620117  ...  0.007710  $12,212.97      12300        -1       100
24     24   1/31/2022  4431.790039  4595.310059  4414.020020  ...  0.015497  $12,502.23      12400        -1       100
25     25    2/7/2022  4505.750000  4590.029785  4401.410156  ... -0.018196  $12,374.75      12500         1         0
26     26   2/14/2022  4412.609863  4489.549805  4327.220215  ... -0.015790  $12,279.35      12600         1         0
27     27   2/21/2022  4332.740234  4385.339844  4114.649902  ...  0.008227  $12,480.38      12700         1         0
28     28   2/28/2022  4354.169922  4416.779785  4279.540039  ... -0.012722  $12,421.61      12800         1         0
29     29    3/7/2022  4327.009766  4327.009766  4157.870117  ... -0.028774  $12,164.19      12900        -1       100
30     30   3/14/2022  4202.750000  4465.399902  4161.720215  ...  0.061558  $13,012.99      13000        -1       100
31     31   3/21/2022  4462.399902  4546.029785  4424.299805  ...  0.017911  $13,346.07      13100         1         0
32     32   3/28/2022  4541.089844  4637.299805  4507.569824  ...  0.000616  $13,454.30      13200         1         0
33     33    4/4/2022  4547.970215  4593.450195  4450.040039  ... -0.012666  $13,383.88      13300         1         0
34     34   4/11/2022  4462.640137  4471.000000  4381.339844  ... -0.021320  $13,198.53      13400         1         0
35     35   4/18/2022  4385.629883  4512.939941  4267.620117  ... -0.027503  $12,935.53      13500        -1       100
36     36   4/25/2022  4255.339844  4308.450195  4124.279785  ... -0.032738  $12,612.05      13600        -1       100
37     37    5/2/2022  4130.609863  4307.660156  4062.510010  ... -0.002079  $12,685.83      13700        -1       100
38     38    5/9/2022  4081.270020  4081.270020  3858.870117  ... -0.024119  $12,479.86      13800        -1       100
39     39   5/16/2022  4013.020020  4090.719971  3810.320068  ... -0.030451  $12,199.84      13900        -1       100
40     40   5/23/2022  3919.419922  4158.490234  3875.129883  ...  0.065844  $13,103.12      14000        -1       100
41     41   5/30/2022  4151.089844  4177.509766  4073.850098  ... -0.011952  $13,046.51      14100         1         0
42     42    6/6/2022  4134.720215  4168.779785  3900.159912  ... -0.050548  $12,487.03      14200         1         0
43     43   6/13/2022  3838.149902  3838.149902  3636.870117  ... -0.057941  $11,863.52      14300        -1       100
44     44   6/20/2022  3715.310059  3913.649902  3715.310059  ...  0.064465  $12,728.31      14400        -1       100
45     45   6/27/2022  3920.760010  3945.860107  3738.669922  ... -0.022090  $12,547.14      14500        -1       100
46     46    7/4/2022  3792.610107  3918.500000  3742.060059  ...  0.019358  $12,890.03      14600        -1       100
47     47   7/11/2022  3880.939941  3880.939941  3721.560059  ... -0.009289  $12,870.29      14700        -1       100
48     48   7/18/2022  3883.790039  4012.439941  3818.629883  ...  0.025489  $13,298.35      14800        -1       100
49     49   7/25/2022  3965.719971  4140.149902  3910.739990  ...  0.042573  $13,964.51      14900         1         0
50     50    8/1/2022  4112.379883  4167.660156  4079.810059  ...  0.003607  $14,114.88      15000         1         0
51     51    8/8/2022  4155.930176  4280.470215  4112.089844  ...  0.032558  $14,674.44      15100         1         0
52     52   8/15/2022  4269.370117  4325.279785  4253.080078  ...  0.000839  $14,786.75      15200         1         0
53     53   8/19/2022  4266.310059  4266.310059  4218.700195  ... -0.012900  $14,696.00      15300         1         0

   

What it should look like:

    Index   timestamp         Open         High          Low  ...   account bal  invested  ST_10_1.0 if trend     trend bal
0       0   8/16/2021  4382.439941  4444.350098  4367.729980  ...   $10,000.00      10000          1        0   $10,000.00        
1       1   8/23/2021  4450.290039  4513.330078  4450.290039  ...   $10,252.42      10100          1        0   $10,252.42        
2       2   8/30/2021  4513.759766  4545.850098  4513.759766  ...   $10,411.67      10200          1        0   $10,411.67        
3       3    9/6/2021  4535.379883  4535.379883  4457.660156  ...   $10,335.25      10300          1        0   $10,335.25        
4       4   9/13/2021  4474.810059  4492.990234  4427.759766  ...   $10,375.93      10400          1        0   $10,375.93        
5       5   9/20/2021  4402.950195  4465.399902  4305.910156  ...   $10,528.57      10500          1        0   $10,528.57        
6       6   9/27/2021  4442.120117  4457.299805  4288.520020  ...   $10,395.95      10600          1        0   $10,395.95        
7       7   10/4/2021  4348.839844  4429.970215  4278.939941  ...   $10,577.79      10700          1        0   $10,577.79        
8       8  10/11/2021  4385.439941  4475.819824  4329.919922  ...   $10,870.57      10800          1        0   $10,870.57        
9       9  10/18/2021  4463.720215  4559.669922  4447.470215  ...   $11,149.33      10900          1        0   $11,149.33        
10     10  10/25/2021  4553.689941  4608.080078  4537.359863  ...   $11,397.70      11000          1        0   $11,397.70        
11     11   11/1/2021  4610.620117  4718.500000  4595.060059  ...   $11,725.75      11100          1        0   $11,725.75        
12     12   11/8/2021  4701.479980  4714.919922  4630.859863  ...   $11,789.11      11200          1        0   $11,789.11        
13     13  11/15/2021  4689.299805  4717.750000  4672.779785  ...   $11,927.15      11300          1        0   $11,927.15        
14     14  11/22/2021  4712.000000  4743.830078  4585.430176  ...   $11,764.79      11400          1        0   $11,764.79        
15     15  11/29/2021  4628.750000  4672.950195  4495.120117  ...   $11,720.92      11500         -1      100   $11,720.92        
16     16   12/6/2021  4548.370117  4713.569824  4540.509766  ...   $12,269.23      11600         -1      100   $11,820.92        
17     17  12/13/2021  4710.299805  4731.990234  4600.220215  ...   $12,131.29      11700          1        0   $11,920.92        
18     18  12/20/2021  4587.899902  4740.740234  4531.100098  ...   $12,507.36      11800          1        0   $12,292.19        
19     19  12/27/2021  4733.990234  4808.930176  4733.990234  ...   $12,714.25      11900          1        0   $12,497.25        
20     20    1/3/2022  4778.140137  4818.620117  4662.740234  ...   $12,576.44      12000          1        0   $12,363.49        
21     21   1/10/2022  4655.339844  4748.830078  4582.240234  ...   $12,638.31      12100          1        0   $12,426.01        
22     22   1/17/2022  4632.240234  4632.240234  4395.339844  ...   $12,020.29      12200          1        0   $11,820.05        
23     23   1/24/2022  4356.319824  4453.229980  4222.620117  ...   $12,212.97      12300         -1      100   $12,011.19        
24     24   1/31/2022  4431.790039  4595.310059  4414.020020  ...   $12,502.23      12400         -1      100   $12,111.19        
25     25    2/7/2022  4505.750000  4590.029785  4401.410156  ...   $12,374.75      12500          1        0   $12,211.19        
26     26   2/14/2022  4412.609863  4489.549805  4327.220215  ...   $12,279.35      12600          1        0   $12,118.38        
27     27   2/21/2022  4332.740234  4385.339844  4114.649902  ...   $12,480.38      12700          1        0   $12,318.08        
28     28   2/28/2022  4354.169922  4416.779785  4279.540039  ...   $12,421.61      12800          1        0   $12,261.37        
29     29    3/7/2022  4327.009766  4327.009766  4157.870117  ...   $12,164.19      12900         -1      100   $12,008.56        
30     30   3/14/2022  4202.750000  4465.399902  4161.720215  ...   $13,012.99      13000         -1      100   $12,108.56        
31     31   3/21/2022  4462.399902  4546.029785  4424.299805  ...   $13,346.07      13100          1        0   $12,208.56        
32     32   3/28/2022  4541.089844  4637.299805  4507.569824  ...   $13,454.30      13200          1        0   $12,316.09        
33     33    4/4/2022  4547.970215  4593.450195  4450.040039  ...   $13,383.88      13300          1        0   $12,260.08        
34     34   4/11/2022  4462.640137  4471.000000  4381.339844  ...   $13,198.53      13400          1        0   $12,098.70        
35     35   4/18/2022  4385.629883  4512.939941  4267.620117  ...   $12,935.53      13500         -1      100   $11,865.95        
36     36   4/25/2022  4255.339844  4308.450195  4124.279785  ...   $12,612.05      13600         -1      100   $11,965.95        
37     37    5/2/2022  4130.609863  4307.660156  4062.510010  ...   $12,685.83      13700         -1      100   $12,065.95        
38     38    5/9/2022  4081.270020  4081.270020  3858.870117  ...   $12,479.86      13800         -1      100   $12,165.95        
39     39   5/16/2022  4013.020020  4090.719971  3810.320068  ...   $12,199.84      13900         -1      100   $12,265.95        
40     40   5/23/2022  3919.419922  4158.490234  3875.129883  ...   $13,103.12      14000         -1      100   $12,365.95        
41     41   5/30/2022  4151.089844  4177.509766  4073.850098  ...   $13,046.51      14100          1        0   $12,465.95        
42     42    6/6/2022  4134.720215  4168.779785  3900.159912  ...   $12,487.03      14200          1        0   $11,935.81        
43     43   6/13/2022  3838.149902  3838.149902  3636.870117  ...   $11,863.52      14300         -1      100   $11,344.24        
44     44   6/20/2022  3715.310059  3913.649902  3715.310059  ...   $12,728.31      14400         -1      100   $11,444.24        
45     45   6/27/2022  3920.760010  3945.860107  3738.669922  ...   $12,547.14      14500         -1      100   $11,544.24        
46     46    7/4/2022  3792.610107  3918.500000  3742.060059  ...   $12,890.03      14600         -1      100   $11,644.24        
47     47   7/11/2022  3880.939941  3880.939941  3721.560059  ...   $12,870.29      14700         -1      100   $11,744.24        
48     48   7/18/2022  3883.790039  4012.439941  3818.629883  ...   $13,298.35      14800         -1      100   $11,844.24        
49     49   7/25/2022  3965.719971  4140.149902  3910.739990  ...   $13,964.51      14900          1        0   $11,944.24        
50     50    8/1/2022  4112.379883  4167.660156  4079.810059  ...   $14,114.88      15000          1        0   $12,087.33        
51     51    8/8/2022  4155.930176  4280.470215  4112.089844  ...   $14,674.44      15100          1        0   $12,580.87        
52     52   8/15/2022  4269.370117  4325.279785  4253.080078  ...   $14,786.75      15200          1        0   $12,691.42        
53     53   8/19/2022  4266.310059  4266.310059  4218.700195  ...   $14,696.00      15300          1        0   $12,627.70        

Python Code:

from ctypes.wintypes import VARIANT_BOOL
from xml.dom.expatbuilder import FilterVisibilityController
import ccxt
from matplotlib import pyplot as plt
import config
import schedule
import pandas as pd
import pandas_ta as ta
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)

import warnings
warnings.filterwarnings('ignore')

import numpy as np
from datetime import datetime
import time

import yfinance as yf

ticker = yf.Ticker('^GSPC')

df = ticker.history(period="1y", interval="1wk")
df.reset_index(inplace=True)
df.rename(columns = {'Date':'timestamp'}, inplace = True)
#df.drop(columns ={'Open', 'High', 'Low', 'Volume'}, inplace=True, axis=1)
df.drop(columns ={'Dividends', 'Stock Splits'}, inplace=True, axis=1)
# df['Close'].ffill(axis = 0, inplace = True)

invest = 10000
weekly = 100

fee = .15/100
fees = 1-fee 

df.loc[df.index == 0, 'rate'] = 1
df.loc[df.index > 0, 'rate'] = (df['Close'] / df['Close'].shift(1))-1

df.loc[df.index == 0, 'account bal'] = invest
for i in range(1, len(df)):
    df.loc[i, 'account bal'] = (df.loc[i-1, 'account bal'] * (1 + df.loc[i, 'rate'])) + weekly

df['invested'] = (df.index*weekly)+invest
    
#Supertrend
ATR = 10
Mult = 1.0

ST = ta.supertrend(df['High'], df['Low'], df['Close'], ATR, Mult)
df[f'ST_{ATR}_{Mult}'] = ST[f'SUPERTd_{ATR}_{Mult}']

df[f'ST_{ATR}_{Mult}'] = df[f'ST_{ATR}_{Mult}'].shift(1).fillna(1)

df.loc[df[f'ST_{ATR}_{Mult}'] == 1, 'if trend'] = 0
df.loc[df[f'ST_{ATR}_{Mult}'] == -1, 'if trend'] = weekly


# df.loc[df.index == 0, 'trend bal'] = invest
# for i in range(1, len(df)):
#     np.where(df.loc[df[f'ST_{ATR}_{Mult}'] == 1, 'trend bal'], (df.loc[i-1, 'trend bal'] * (1 + df.loc[i, 'rate'])) + weekly, df.loc[i-i, 'trend bal'] + df['if trend'])



# df.loc[df.index == 0, 'trend bal'] = invest
# for i in range(1, len(df)):
#     if df[f'ST_{ATR}_{Mult}'] == 1:
#         df.loc[i, 'trend bal'] = (df.loc[i-1, 'trend bal'] * (1 + df.loc[i, 'rate'])) + weekly
#     else:
#         df.loc[i, 'trend bal'] = df.loc[i-i, 'trend bal'] + df['if trend']


# for i in range(1, len(df)):
#     df.loc[df[f'ST_{ATR}_{Mult}'].shift(1) == 1, 'trend bal'] = (df.loc[i-1, 'trend bal'] * (1 + df.loc[i, 'rate'])) + weekly
#     df.loc[df[f'ST_{ATR}_{Mult}'].shift(1) == -1, 'trend bal'] = df.loc[i-i, 'trend bal'] + df['if trend'] 


#df.to_csv('GSPC.csv',index=False,mode='a')

# plt.plot(df['timestamp'], df['account bal'])
# plt.plot(df['timestamp'], df['invested'])
# plt.plot(df['timestamp'], df['close'])
# plt.show()
print(df)

What some errors looks like:

    np.where(df.loc[df[f'ST_{ATR}_{Mult}'] == 1, 'trend bal'], (df.loc[i-1, 'trend bal'] * (1 + df.loc[i, 'rate'])) + weekly, df.loc[i-i, 'trend bal'] + df['if trend'])
  File "<__array_function__ internals>", line 180, in where
ValueError: operands could not be broadcast together with shapes (36,) () (54,)

Another error:

line 1535, in __nonzero__
    raise ValueError(
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().

No error but not the correct amounts:

df['trend bal'] = 0
for i in range(1, len(df)):
    df.loc[df[f'ST_{ATR}_{Mult}'].shift(1) == 1, 'trend bal'] = (df.loc[i-1, 'trend bal'] * (1 + df.loc[i, 'rate'])) + weekly
    df.loc[df[f'ST_{ATR}_{Mult}'].shift(1) == -1, 'trend bal'] = df.loc[i-i, 'trend bal'] + df['if trend'] 

See photo of screenshot of excel formula: excel spreadsheet

*** Made correct calculations thanks to Ingwersen_erik:

from re import X
import pandas as pd
import pandas_ta as ta
import numpy as np
pd.set_option('display.max_rows', None)

df = pd.read_csv('etcusd.csv')


invest = 10000
weekly = 100

fee = .15/100
fees = 1-fee 

df.loc[df.index == 0, 'rate'] = 1
df.loc[df.index > 0, 'rate'] = (df['Close'] / df['Close'].shift(1))-1

df.loc[df.index == 0, 'account bal'] = invest
for i in range(1, len(df)):
    df.loc[i, 'account bal'] = (df.loc[i-1, 'account bal'] * (1 + df.loc[i, 'rate'])) + weekly

df['invested'] = (df.index*weekly)+invest

MDD = ((df['account bal']-df['account bal'].max()) / df['account bal'].max()).min()

#Supertrend
ATR = 10
Mult = 1.0

ST = ta.supertrend(df['High'], df['Low'], df['Close'], ATR, Mult)
df[f'ST_{ATR}_{Mult}'] = ST[f'SUPERTd_{ATR}_{Mult}']

df[f'ST_{ATR}_{Mult}'] = df[f'ST_{ATR}_{Mult}'].shift(1).fillna(1)

df.loc[df.index == 0, "trend bal"] = invest

for index, row in df.iloc[1:].iterrows():
    row['trend bal'] = np.where(
        df.loc[index - 1, f'ST_{ATR}_{Mult}'] == 1,
        (df.loc[index - 1, 'trend bal'] * (1 + row['rate'])) + weekly,
        df.loc[index - 1, 'trend bal'] + weekly,
    )
    df.loc[df.index == index, 'trend bal'] = row['trend bal']

print(df)
2
  • Are you getting an error? It would be helpful to edit your question to share what your initial df looks like, and what you want the final df to look like. Commented Aug 19, 2022 at 21:14
  • 1
    Thank you for the comment. I've made the edit. Thanks again. Commented Aug 20, 2022 at 0:28

1 Answer 1

1

Does this solve your problem?


import time
import ccxt
import warnings
import pandas as pd
import pandas_ta as ta
import yfinance as yf
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime
from ctypes.wintypes import VARIANT_BOOL
from xml.dom.expatbuilder import FilterVisibilityController


warnings.filterwarnings("ignore")
pd.set_option("display.max_rows", None)
pd.set_option("display.max_columns", None)

invest = 10_000
weekly = 100
fee = 0.15 / 100
fees = 1 - fee
ATR = 10
Mult = 1.0

ticker = yf.Ticker("^GSPC")
df = (
    ticker.history(period="1y", interval="1wk")
    .reset_index()
    .rename(columns={"Date": "timestamp"})
    .drop(columns={"Dividends", "Stock Splits"}, errors="ignore")
)
df.loc[df.index == 0, "rate"] = 1
df.loc[df.index > 0, "rate"] = (df["Close"] / df["Close"].shift(1)) - 1
df.loc[df.index == 0, "account bal"] = invest

df.loc[df.index == 0, "account bal"] = invest

for i in range(1, len(df)):
    df.loc[i, "account bal"] = (
        df.loc[i - 1, "account bal"] * (1 + df.loc[i, "rate"])
    ) + weekly


df["invested"] = (df.index * weekly) + invest

# Super-trend
ST = ta.supertrend(df["High"], df["Low"], df["Close"], ATR, Mult)
df[f"ST_{ATR}_{Mult}"] = ST[f"SUPERTd_{ATR}_{Mult}"]
df[f"ST_{ATR}_{Mult}"] = df[f"ST_{ATR}_{Mult}"].shift(1).fillna(1)
df.loc[df[f"ST_{ATR}_{Mult}"] == 1, "if trend"] = 0
df.loc[df[f"ST_{ATR}_{Mult}"] == -1, "if trend"] = weekly

df.loc[df.index == 0, "trend bal"] = invest

# === Potential correction to the np.where ==============================
for index, row in df.iloc[1:].iterrows():
    row["trend bal"] = np.where(
        row[f"ST_{ATR}_{Mult}"] == 1,
        (df.loc[index - 1, "trend bal"] * (1 + row["rate"])) + weekly,
        df.loc[index - 1, "trend bal"] + row["if trend"],
    )
    # NOTE: The original "otherwise" clause from `np.where` had the
    #       following value: `df.loc[index - index, "trend bal"] + ...`
    #       I assumed you meant `index -1`, instead of `index - index`,
    #       therefore the above code uses `index -1`. If you really meant
    #       `index - index`, please change the code accordingly.

    df.loc[df.index == index, "trend bal"] = row["trend bal"]

df

Result:

timestamp Open High Low Close Volume rate account bal invested ST_10_1.0 if trend trend bal
2021-08-16 4382.44 4444.35 4367.73 4441.67 5988610000 1 10000 10000 1 0 10000
2021-08-23 4450.29 4513.33 4450.29 4509.37 14124930000 0.0152421 10252.4 10100 1 0 10252.4
2021-08-30 4513.76 4545.85 4513.76 4535.43 14256180000 0.00577909 10411.7 10200 1 0 10411.7
2021-09-06 4535.38 4535.38 4457.66 4458.58 11793790000 -0.0169444 10335.3 10300 1 0 10335.3
2021-09-13 4474.81 4492.99 4427.76 4432.99 17763120000 -0.00573946 10375.9 10400 1 0 10375.9
2021-09-20 4402.95 4465.4 4305.91 4455.48 15697030000 0.00507327 10528.6 10500 1 0 10528.6
2021-09-27 4442.12 4457.3 4288.52 4357.04 15555390000 -0.0220941 10396 10600 1 0 10396
2021-10-04 4348.84 4429.97 4278.94 4391.34 14795520000 0.00787227 10577.8 10700 1 0 10577.8
2021-10-11 4385.44 4475.82 4329.92 4471.37 13758090000 0.0182246 10870.6 10800 1 0 10870.6
2021-10-18 4463.72 4559.67 4447.47 4544.9 13966070000 0.0164446 11149.3 10900 1 0 11149.3
2021-10-25 4553.69 4608.08 4537.36 4605.38 16206040000 0.0133072 11397.7 11000 1 0 11397.7
2021-11-01 4610.62 4718.5 4595.06 4697.53 16397220000 0.0200092 11725.8 11100 1 0 11725.8
2021-11-08 4701.48 4714.92 4630.86 4682.85 15646510000 -0.00312498 11789.1 11200 1 0 11789.1
2021-11-15 4689.3 4717.75 4672.78 4697.96 15279660000 0.00322664 11927.2 11300 1 0 11927.2
2021-11-22 4712 4743.83 4585.43 4594.62 11775840000 -0.0219967 11764.8 11400 1 0 11764.8
2021-11-29 4628.75 4672.95 4495.12 4538.43 20242840000 -0.0122295 11720.9 11500 -1 100 11864.8
2021-12-06 4548.37 4713.57 4540.51 4712.02 15411530000 0.0382489 12269.2 11600 -1 100 11964.8
2021-12-13 4710.3 4731.99 4600.22 4620.64 19184960000 -0.0193929 12131.3 11700 1 0 11832.8
2021-12-20 4587.9 4740.74 4531.1 4725.79 10594350000 0.0227566 12507.4 11800 1 0 12202
2021-12-27 4733.99 4808.93 4733.99 4766.18 11687720000 0.00854675 12714.3 11900 1 0 12406.3
2022-01-03 4778.14 4818.62 4662.74 4677.03 16800900000 -0.0187048 12576.4 12000 1 0 12274.3
2022-01-10 4655.34 4748.83 4582.24 4662.85 17126800000 -0.00303177 12638.3 12100 1 0 12337.1
2022-01-17 4632.24 4632.24 4395.34 4397.94 14131200000 -0.0568129 12020.3 12200 1 0 11736.1
2022-01-24 4356.32 4453.23 4222.62 4431.85 21218590000 0.00771046 12213 12300 -1 100 11836.1
2022-01-31 4431.79 4595.31 4414.02 4500.53 18846100000 0.0154968 12502.2 12400 -1 100 11936.1
2022-02-07 4505.75 4590.03 4401.41 4418.64 19119200000 -0.0181956 12374.7 12500 1 0 11819
2022-02-14 4412.61 4489.55 4327.22 4348.87 17775970000 -0.0157899 12279.4 12600 1 0 11732.3
2022-02-21 4332.74 4385.34 4114.65 4384.65 16834460000 0.00822737 12480.4 12700 1 0 11928.9
2022-02-28 4354.17 4416.78 4279.54 4328.87 22302830000 -0.0127216 12421.6 12800 1 0 11877.1
2022-03-07 4327.01 4327.01 4157.87 4204.31 23849630000 -0.0287743 12164.2 12900 -1 100 11977.1
2022-03-14 4202.75 4465.4 4161.72 4463.12 24946690000 0.0615583 13013 13000 -1 100 12077.1
2022-03-21 4462.4 4546.03 4424.3 4543.06 19089240000 0.0179112 13346.1 13100 1 0 12393.4
2022-03-28 4541.09 4637.3 4507.57 4545.86 19212230000 0.000616282 13454.3 13200 1 0 12501.1
2022-04-04 4547.97 4593.45 4450.04 4488.28 19383860000 -0.0126665 13383.9 13300 1 0 12442.7
2022-04-11 4462.64 4471 4381.34 4392.59 13812410000 -0.02132 13198.5 13400 1 0 12277.4
2022-04-18 4385.63 4512.94 4267.62 4271.78 18149540000 -0.0275032 12935.5 13500 -1 100 12377.4
2022-04-25 4255.34 4308.45 4124.28 4131.93 19610750000 -0.032738 12612 13600 -1 100 12477.4
2022-05-02 4130.61 4307.66 4062.51 4123.34 21039720000 -0.00207901 12685.8 13700 -1 100 12577.4
2022-05-09 4081.27 4081.27 3858.87 4023.89 23166570000 -0.0241188 12479.9 13800 -1 100 12677.4
2022-05-16 4013.02 4090.72 3810.32 3901.36 20590520000 -0.0304506 12199.8 13900 -1 100 12777.4
2022-05-23 3919.42 4158.49 3875.13 4158.24 19139100000 0.0658437 13103.1 14000 -1 100 12877.4
2022-05-30 4151.09 4177.51 4073.85 4108.54 16049940000 -0.0119522 13046.5 14100 1 0 12823.5
2022-06-06 4134.72 4168.78 3900.16 3900.86 17547150000 -0.0505484 12487 14200 1 0 12275.3
2022-06-13 3838.15 3838.15 3636.87 3674.84 24639140000 -0.0579411 11863.5 14300 -1 100 12375.3
2022-06-20 3715.31 3913.65 3715.31 3911.74 19287840000 0.0644654 12728.3 14400 -1 100 12475.3
2022-06-27 3920.76 3945.86 3738.67 3825.33 17735450000 -0.0220899 12547.1 14500 -1 100 12575.3
2022-07-04 3792.61 3918.5 3742.06 3899.38 14223350000 0.0193578 12890 14600 -1 100 12675.3
2022-07-11 3880.94 3880.94 3721.56 3863.16 16313500000 -0.00928865 12870.3 14700 -1 100 12775.3
2022-07-18 3883.79 4012.44 3818.63 3961.63 16859220000 0.0254895 13298.4 14800 -1 100 12875.3
2022-07-25 3965.72 4140.15 3910.74 4130.29 17356830000 0.0425734 13964.5 14900 1 0 13523.5
2022-08-01 4112.38 4167.66 4079.81 4145.19 18072230000 0.00360747 14114.9 15000 1 0 13672.3
2022-08-08 4155.93 4280.47 4112.09 4280.15 18117740000 0.0325582 14674.4 15100 1 0 14217.4
2022-08-15 4269.37 4325.28 4218.7 4228.48 16255850000 -0.012072 14597.3 15200 1 0 14145.8
2022-08-19 4266.31 4266.31 4218.7 4228.48 2045645000 0 14697.3 15300 1 0 14245.8
Sign up to request clarification or add additional context in comments.

Comments

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.