My confusion arises from the following example:
import numpy as np
a = np.array([['A', 'B', 'C', 'D', 'E'],
['F', 'G', 'H', 'I', 'J'],
['K', 'L', 'M', 'N', 'O'],
['P', 'Q', 'R', 'S', 'T'],
['U', 'V', 'W', 'X', 'Y']])
print(a[:2, 1:4])
print()
print(a[:2][1:4])
Output:
[['B', 'C', 'D'],
['G', 'H', 'I']]
[['F', 'G', 'H', 'I', 'J']]
x = np.arange(10)
x.shape = (2,5)
In this example given by Numpy.org in the Single element indexing section, x[0,2] = x[0][2], so I assumed this would hold for the above.
I've tried the above with other examples such as y = np.arange(35).reshape(5,7) with y[1:5:2,::3] and y[1:5:2][::3]. The output is different: I think this does not hold when slices are used.