Profiling some computational work I'm doing showed me that one bottleneck in my program was a function that basically did this (np is numpy, sp is scipy):
def mix1(signal1, signal2):
spec1 = np.fft.fft(signal1, axis=1)
spec2 = np.fft.fft(signal2, axis=1)
return np.fft.ifft(spec1*spec2, axis=1)
Both signals have shape (C, N) where C is the number of sets of data (usually less than 20) and N is the number of samples in each set (around 5000). The computation for each set (row) is completely independent of any other set.
I figured that this was just a simple convolution, so I tried to replace it with:
def mix2(signal1, signal2):
outputs = np.empty_like(signal1)
for idx, row in enumerate(outputs):
outputs[idx] = sp.signal.convolve(signal1[idx], signal2[idx], mode='same')
return outputs
...just to see if I got the same results. But I didn't, and my questions are:
- Why not?
- Is there a better way to compute the equivalent of
mix1()?
(I realise that mix2 probably wouldn't have been faster as-is, but it might have been a good starting point for parallelisation.)
Here's the full script I used to quickly check this:
import numpy as np
import scipy as sp
import scipy.signal
N = 4680
C = 6
def mix1(signal1, signal2):
spec1 = np.fft.fft(signal1, axis=1)
spec2 = np.fft.fft(signal2, axis=1)
return np.fft.ifft(spec1*spec2, axis=1)
def mix2(signal1, signal2):
outputs = np.empty_like(signal1)
for idx, row in enumerate(outputs):
outputs[idx] = sp.signal.convolve(signal1[idx], signal2[idx], mode='same')
return outputs
def test(num, chans):
sig1 = np.random.randn(chans, num)
sig2 = np.random.randn(chans, num)
res1 = mix1(sig1, sig2)
res2 = mix2(sig1, sig2)
np.testing.assert_almost_equal(res1, res2)
if __name__ == "__main__":
np.random.seed(0x1234ABCD)
test(N, C)
mix1is doing the equivalent of a circular convolution. I completely forgot about that distinction.