If you look at the numpy.unique documentation, this function returns the values and the associated counts (because you specified return_counts=True). A slight modification of your code is necessary to give the correct result. What you are trying todo is to find the value associated to the highest count:
import numpy as np
a = np.array([[1,5,3,4],[1,5,3,3],[1,5,3,3]])
result = np.zeros(a.shape[1])
for i in range(len(result)):
values, counts = np.unique(a[:,i], return_counts = True)
result[i] = values[np.argmax(counts)]
print(result)
Output:
% python3 script.py
[1. 5. 3. 4.]
Here is a code tha compares your solution with the scipy.stats.mode function:
import numpy as np
import scipy.stats as sps
import time
a = np.random.randint(1,100,(100,100))
t_start = time.time()
result = np.zeros(a.shape[1])
for i in range(len(result)):
values, counts = np.unique(a[:,i], return_counts = True)
result[i] = values[np.argmax(counts)]
print('Timer 1: ', (time.time()-t_start), 's')
t_start = time.time()
result_2 = sps.mode(a, axis=0).mode
print('Timer 2: ', (time.time()-t_start), 's')
print('Matrices are equal!' if np.allclose(result, result_2) else 'Matrices differ!')
Output:
% python3 script.py
Timer 1: 0.002721071243286133 s
Timer 2: 0.003339052200317383 s
Matrices are equal!
I tried several values for parameters and your code is actually faster than scipy.stats.mode function so it is probably close to optimal.
a=np.array([[1,5,3,4],[1,5,3,3],[1,5,3,3]])you will get theresult=[1. 5. 3. 4.]which is not correct. The last column mode is 3.