A minimal numpy structured array generator:
import numpy as np
index = np.arange(4)
A = np.stack((np.sin(index), np.cos(index)),axis=1)
B = np.eye(4).astype(int)
C = np.array([1, 0, 1, 0], dtype=bool)
goodies = [(a, b, c, d) for a, b, c, d in zip(index, A, B, C)]
dt = [('index', 'int'), ('two_floats', 'float', 2), 
      ('four_ints', 'int', 4), ('and_a_bool', 'bool')]
s = np.array(goodies, dtype=dt)
generates the minimal numpy structured array:
array([(0, [ 0.        ,  1.        ], [1, 0, 0, 0],  True),
       (1, [ 0.84147098,  0.54030231], [0, 1, 0, 0], False),
       (2, [ 0.90929743, -0.41614684], [0, 0, 1, 0],  True),
       (3, [ 0.14112001, -0.9899925 ], [0, 0, 0, 1], False)],
      dtype=[('index', '<i8'), ('two_floats', '<f8', (2,)), ('four_ints', '<i8', (4,)), ('and_a_bool', '?')])
I want to sort first by and_a_bool descending, then by the second column of two_floats ascending so that the output would then be
array([(2, [ 0.90929743, -0.41614684], [0, 0, 1, 0],  True),
       (0, [ 0.        ,  1.        ], [1, 0, 0, 0],  True),
       (3, [ 0.14112001, -0.9899925 ], [0, 0, 0, 1], False),
       (1, [ 0.84147098,  0.54030231], [0, 1, 0, 0], False)],
      dtype=[('index', '<i8'), ('two_floats', '<f8', (2,)), ('four_ints', '<i8', (4,)), ('and_a_bool', '?')])
np.lexsort was mentioned in this answer but I don't see how to apply that here.
I'm looking for something using existing numpy methods rather than specialized code. My arrays will not be very large so I don't have a strong preference for in-place sorting or generating a new array,

np.sorttakes anorderparameter that lets you specify which fields to sort, and in what order (in effect a refinement onlexsort). To get descending sort, make a new array with negated fields, and usenp.argsortto get the desired sort order.