I'm merging 5 files. Each file has certain column names which are same across the other files. I used this answer to perform the concat operation. There is one column which is unique in all files i.e ID. When I merge the columns I'm noticing the suffix(_x, _y) being applied to end of the column names(due to merge functionality) which are repeating. How can I merge these columns into a single column (Irrespective of null values).
eg:
Dataframe 1
ID    Name    Age    LAN_NBR
1     ABC     24     G284992
Dataframe 2
ID    Name    Street     City     State    TYPE
2     John    Wacker     Chicago  IL       HUB
Dataframe 3
ID    CLOSE_DATE    TYPE
3     1/1/2021      HUB
Dataframe 4
ID    TYPE    LAN_NBR
1     HUB     G284992
Expected Output
ID    Name    Age    LAN_NBR    Street     City     State    TYPE    CLOSE_DATE
1     ABC     24     G284992                                 HUB
2     John                      Wacker     Chicago  IL       HUB
3                                                            HUB     1/1/2021
Code
obj1=pd.read_excel("file1.xlsx")
obj2=pd.read_excel("file2.xlsx")
obj3=pd.read_excel("file3.xlsx")
obj4=pd.read_excel("file4.xlsx")
obj5=pd.read_excel("file5.xlsx")
obj1_ID=pd.DataFrame(obj1["ID"])
obj2_ID=pd.DataFrame(obj2["ID"])
obj3_ID=pd.DataFrame(obj3["ID"])
obj4_ID=pd.DataFrame(obj4["ID"])
obj5_ID=pd.DataFrame(obj5["ID"])
concat_pd=[obj1_ID,obj2_ID,obj3_ID,obj4_ID,obj5_ID]
obj_final=pd.concat(concat_pd).fillna('')
obj_final.obj_final.drop_duplicates(subset='ID',keep='first')
merge1=pd.merge(left=obj_final, right=obj1, on="ID", how="left")
merge1=pd.merge(left=obj_final, right=obj2, on="ID", how="left")
merge1=pd.merge(left=obj_final, right=obj3, on="ID", how="left")
merge1=pd.merge(left=obj_final, right=obj4, on="ID", how="left")
merge1=pd.merge(left=obj_final, right=obj5, on="ID", how="left")


suffix = (None, "_drop")and then reindex the final dataframe to the union of your other dataframe column names.