This is based on this question asked 2018-10.
Consider the following code. Three simple functions to count non-zero elements in a NumPy 3D array (1000 × 1000 × 1000).
import numpy as np
def f_1(arr):
return np.sum(arr > 0)
def f_2(arr):
ans = 0
for val in range(arr.shape[0]):
ans += np.sum(arr[val, :, :] > 0)
return ans
def f_3(arr):
return np.count_nonzero(arr)
if __name__ == '__main__':
data = np.random.randint(0, 10, (1_000, 1_000, 1_000))
print(f_1(data))
print(f_2(data))
print(f_3(data))
Runtimes on my machine (Python 3.7.?, Windows 10, NumPy 1.16.?):
%timeit f_1(data)
1.73 s ± 21.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit f_2(data)
1.4 s ± 1.36 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit f_3(data)
2.38 s ± 956 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
So, f_2() works faster than f_1() and f_3(). However, it's not the case with data of smaller size. The question is - why so? Is it NumPy, Python, or something else?
np.random.randintcall.