Okay, you've created an array of integers and populated it with the integers from 0 to 4. Then you created a 4 element array of pointers to integers, and initialized it so its four elements point to the first four elements of a. So far, so good.
Then the printf is very strange. printf is passed a single argument, namely ("%u\n%u\n%u",p,p,(*p)). This is a comma-expression which means that the comma-separated expressions will be calculated in turn, and only the last one returned. Since the very first thing is a literal, and not an expression, I'd expect it to generate an error. However, without the extraneous parentheses, you have:
printf("%u\n%u\n%u\n",p, *p, *(*p));
This is legal. Three values are passed to printf, interpreted as unsigned integers (which actually only works on some systems, since what you are actually passing in are pointers in the first two cases, and they aren't guarateed to be the same size as unsigned ints) and printed.
Those values are p, *p and **p. p is an array, and so the value of p is the address of the array. *p is what p points to, which are the values of the array. *p is the first value, *(p+1) is the second value, etc. Now *p is the value stored in p[0] which is the address of a[0], so another address is printed. The third argument is **p which is the value stored at (*p), or a[0], which is 0
     
    
%pwhich is meant for pointer values and actually it is preferred.phere or is this declared somewhere else??%unot through%d. Pointers are printed through%p. Yourprintfstatement produces undefined behavior because your are trying to use%uwith pointers, which makes your "how does this statement work" question meaningless. It doesn't work.