I have a pandas dataframe that was a bunch of one row dataframes concatenated together. The concatenated dataframe looks like this:
import pandas as pd
Type = ['Type','Category_A','Category_A','Category_B']
Year = ['Year','2020','2021','2020']
Group1 = ['Group1',123.45, 456.78, 678.90]
Group2 = ['Group2',999.23,1234.23,6543.23]
Group3 = ['Group3',12.45,546.12,6573.12]
Group4 = ['Group4',98.65, 657.34,654.78]
Type_df = pd.DataFrame([Type], columns=['Title','A','B','C'])
Year_df = pd.DataFrame([Year], columns=['Title','A','B','C'])
Group1_df = pd.DataFrame([Group1], columns=['Title','A','B','C'])
Group2_df = pd.DataFrame([Group2], columns=['Title','A','B','C'])
Group3_df = pd.DataFrame([Group3], columns=['Title','A','B','C'])
Group4_df = pd.DataFrame([Group4], columns=['Title','A','B','C'])
concat = pd.concat([Type_df, Year_df, Group1_df, Group2_df, Group3_df, Group4_df])
print(concat)
Output is:
Title A B C
0 Type Category_A Category_A Category_B
0 Year 2020 2021 2020
0 Group1 123.45 456.78 678.9
0 Group2 999.23 1234.23 6543.23
0 Group3 12.45 546.12 6573.12
0 Group4 98.65 657.34 654.78
What I am trying to do is take the first two rows of data and make them the first two columns, then make the next rows (Group1 - Group4) and make them columns 3 - 6. So, my end result will look something like this:
Type Year Group1 Group2 Group3 Group4
Category_A 2020 123.45 999.23 12.45 98.65
Category_A 2021 456.78 1234.23 546.12 657.34
Category_B 2020 678.9 6543.23 6573.12 654.78
I'm still very new at Python and I have tried a few different versions of pivot, pivot_table, and melt but I cannot seem to ever get it to work correctly. Any help would be appreciated.