I have a Pandas Dataframe that look like this :
              tags   value
[tag1, tag2, tag3]       0
[tag2, tag3]            10
[tag1, tag3]            50
                       ...
On this Dataframe, I want to apply a function that, for each tags of each rows, will create a new row with a column 'tag', and a column 'related_tags'. Here is an example of what I am expecting :
 tag   value    related_tags
tag1       0    [tag2, tag3] 
tag2       0    [tag1, tag3] 
tag3       0    [tag1, tag2] 
tag2      10    [tag3]     
tag3      10    [tag2]    
tag1      50    [tag3]   
tag3      50    [tag1]
I am familiar with Spark DataFrames but not with Pandas, is there a simple way to achieve this ?
