I have two dataframes of demographic and medication data that I created from a pipe-delimited file:
demo='xxyy1046_demo.txt'
demog=pd.read_table(demo, delimiter='|', header=0)
demog.info()
med='xxyy1046_medication.txt'
meds=pd.read_table(med, delimiter='|', header=0)
meds.info() #n=2654
I now want to use SQLalchemy to convert these dataframes in SQL table objects that I can select, join, group_by, etc.
from sqlalchemy import create_engine, column, select, Table, Metadata
engine = create_engine('sqlite://', echo=False)
demog.to_sql('Demog_sql', con=engine)
metadata = sql.Metadata()
demog_sql = Table('Demog_sql', metadata, autoload=True, autoload_with=engine)
stmt = select([demog_sql.columns.FirstName])
print(stmt)
I get the result: SELECT "Demog_sql"."FirstName" FROM "Demog_sql"
This is not what I want! I want to be able to manipulate the data using select statements, joins, etc. I am doing something wrong with the metadata step. How do I fix this?