Has anyone experienced this before?
I have a table with "int" and "varchar" columns - a report schedule table.
I am trying to import an excel file with ".xls" extension to this table using a python program. I am using pandas to_sql to read in 1 row of data.
Data imported is 1 row 11 columns.
Import works successfully but after the import I noticed that the datatypes in the original table have now been altered from:
int --> bigint
char(1) --> varchar(max)
varchar(30) --> varchar(max)
Any idea how I can prevent this? The switch in datatypes is causing issues in downstrean routines.
df = pd.read_excel(schedule_file,sheet_name='Schedule')
params = urllib.parse.quote_plus(r'DRIVER={SQL Server};SERVER=<<IP>>;DATABASE=<<DB>>;UID=<<UDI>>;PWD=<<PWD>>')
conn_str = 'mssql+pyodbc:///?odbc_connect={}'.format(params)
engine = create_engine(conn_str)
table_name='REPORT_SCHEDULE'
df.to_sql(name=table_name,con=engine, if_exists='replace',index=False)
TIA