This is what I have:
ID  PRICE   VOLUME  PRODUC      FROM_DATE   TO_DATE         NUMDAYS
1   20.5    15.0    prod_1      2018-08-06      2018-08-13      7
2   15.6    10.0    prod_2      2018-08-06      2018-08-08      2
This is what I want to achieve:
ID  PRICE   VOLUME  PRODUC      FROM_DATE   TO_DATE         NUMDAYS
1   20.5    15.0    prod_1      2018-08-06      2018-08-07      1
1   20.5    15.0    prod_1      2018-08-07      2018-08-08      1
1   20.5    15.0    prod_1      2018-08-08      2018-08-09      1
1   20.5    15.0    prod_1      2018-08-09      2018-08-10      1
1   20.5    15.0    prod_1      2018-08-10      2018-08-11      1
1   20.5    15.0    prod_1      2018-08-11      2018-08-12      1
1   20.5    15.0    prod_1      2018-08-12      2018-08-13      1
2   15.6    10.0    prod_2      2018-08-06      2018-08-07      1
2   15.6    10.0    prod_2      2018-08-07      2018-08-08      1
So I have a Dataframe with information about products that affect different dates.
- Products may affect from 1 day to n days.
- The volume affects each date in between.
How could I do it?
I have tryed: - To do a for loop for each element of the dataframe but
df_results = pd.DataFrame(columns=df.columns)
for index, row in df.iterrows():
    day = row.to_dict()
    for i in range(0,int(row['numdays'])):
        day['NUMDAYS'] = 1
        day['FROM_DATE'] = row['FROM_DATE']+datetime.timedelta(days=i)
        day['TO_DATE'] =  day['FROM_DATE'] + datetime.timedelta(days=1)
        df_aux = pd.DataFrame.from_dict(day)
        df_results .append(df_aux)
However I can't make it work.

