I have a super long string in DataFrame, need to extract all numbers, just all the digits, not include AW7S23211 and 7P0145 at the end
sample data:
id rate
1 {"mileage": "42331", "pricing": [{"fees_tax_cents": 700, "start_fee_cents": 203159, "non_taxable_fees": [{"name": "Electronic Vehicle Registration or Transfer Charge", "value_cents": 2900}, {"name": "Registration Fees (Transfer and Smog)", "value_cents": 75500}], "cpo_premium_cents": 0, "taxable_fees_cents": 8000, "start_fee_tax_cents": 17776, "dealer_reserve_cents": 0, "monthly_payment_cents": 29033, "non_taxable_fees_cents": 78400, "expected_annual_mileage": 10000, "monthly_tax_payment_cents": 2540, "total_drive_off_tax_cents": 21017, "total_drive_off_cost_cents": 318592, "micro_ownership_premium_cents": 203159, "cost_per_additional_mile_cents": 13, "start_fee_without_cpo_premium_cents": 203159}, {"fees_tax_cents": 700, "start_fee_cents": 203159, "non_taxable_fees": [{"name": "Electronic Vehicle Registration or Transfer Charge", "value_cents": 2900}, {"name": "Registration Fees (Transfer and Smog)", "value_cents": 75500}], "cpo_premium_cents": 0, "taxable_fees_cents": 8000, "start_fee_tax_cents": 17776, "dealer_reserve_cents": 0, "monthly_payment_cents": 34450, "non_taxable_fees_cents": 78400, "expected_annual_mileage": 15000, "monthly_tax_payment_cents": 3014, "total_drive_off_tax_cents": 21491, "total_drive_off_cost_cents": 324009, "micro_ownership_premium_cents": 203159, "cost_per_additional_mile_cents": 13, "start_fee_without_cpo_premium_cents": 203159}], "stock_number": "AW7S23211"}
2 {"mileage": "3343", "pricing": [{"fees_tax_cents": 700, "start_fee_cents": 766343, "non_taxable_fees": [{"name": "Electronic Vehicle Registration or Transfer Charge", "value_cents": 2900}, {"name": "Registration Fees (Transfer and Smog)", "value_cents": 0}], "cpo_premium_cents": 0, "taxable_fees_cents": 8000, "start_fee_tax_cents": 67055, "dealer_reserve_cents": 0, "monthly_payment_cents": 101106, "non_taxable_fees_cents": 2900, "expected_annual_mileage": 12500, "monthly_tax_payment_cents": 8847, "total_drive_off_tax_cents": 76602, "total_drive_off_cost_cents": 878349, "micro_ownership_premium_cents": 766343, "cost_per_additional_mile_cents": 46, "start_fee_without_cpo_premium_cents": 766343}, {"fees_tax_cents": 700, "start_fee_cents": 766343, "non_taxable_fees": [{"name": "Electronic Vehicle Registration or Transfer Charge", "value_cents": 2900}, {"name": "Registration Fees (Transfer and Smog)", "value_cents": 0}], "cpo_premium_cents": 0, "taxable_fees_cents": 8000, "start_fee_tax_cents": 67055, "dealer_reserve_cents": 0, "monthly_payment_cents": 89436, "non_taxable_fees_cents": 2900, "expected_annual_mileage": 7500, "monthly_tax_payment_cents": 7826, "total_drive_off_tax_cents": 75581, "total_drive_off_cost_cents": 866679, "micro_ownership_premium_cents": 766343, "cost_per_additional_mile_cents": 46, "start_fee_without_cpo_premium_cents": 766343}], "stock_number": "7P0145"}
expected output
id rate
1 42331 700 203159 2900 75500 ......
2 3343 700 766343 2900 0 ......
the code below only work for simple string, but not on this super long one, please advise
import pandas as pd
df= pd.read_csv('C:/Users/Desktop/items.csv')
df=pd.DataFrame(df)
from ast import literal_eval
df['rate'] = df['rate'].apply(literal_eval)
s=df.rate.apply(pd.Series).set_index('id').stack().apply(pd.Series)
if treat it as JSON, I have "error: look-behind requires fixed-width pattern " Why ?
import re
import pandas as pd
df= pd.read_csv('C:/Users/Desktop/items.csv')
p = re.compile(r'(?<=\s+|")\d+(?!\w+)')
df.rate.apply(lambda x: re.findall(p, x))