I am trying to see what my data looks like after going through a convolutional layer in my Keras model. I am using the Theano backend. The code I have has been cobbled together from the Keras Github:
def get_layer0_outputs(model, test_data):
output = model.layers[0].output
inputs = [K.learning_phase()] + model.inputs
func = K.function(inputs, [output])
return func([0] + [test_data])
What I'm trying to do here is compile a function for the first layer (a Conv2D layer) in my network. The test_data argument is an np.ndarray. My model is loaded correctly, and I have already trained it with decent accuracy.
However, when I call this function, I get a cryptic stacktrace:
Traceback (most recent call last):
File "/usr/local/lib/python3.5/dist-packages/theano/compile/function_module.py", line 884, in __call__
self.fn() if output_subset is None else\
File "/usr/local/lib/python3.5/dist-packages/theano/gof/op.py", line 872, in rval
r = p(n, [x[0] for x in i], o)
File "/usr/local/lib/python3.5/dist-packages/theano/tensor/nnet/abstract_conv.py", line 1626, in perform
conv_out = self.conv(img, kern, mode="valid", dilation=self.filter_dilation)
File "/usr/local/lib/python3.5/dist-packages/theano/tensor/nnet/abstract_conv.py", line 1531, in conv
dilated_kern[n, im0, ...],
IndexError: index 1 is out of bounds for axis 1 with size 1
What does this mean? Am I calling my function incorrectly?