NumPy has the efficient function/method nonzero() to identify the indices of non-zero elements in an ndarray object. What is the most efficient way to obtain the indices of the elements that do have a value of zero?
9 Answers
numpy.where() is my favorite.
>>> x = numpy.array([1,0,2,0,3,0,4,5,6,7,8])
>>> numpy.where(x == 0)[0]
array([1, 3, 5])
The method where returns a tuple of ndarrays, each corresponding to a different dimension of the input. Since the input is one-dimensional, the [0] unboxes the tuple's only element.
7 Comments
where() return a tuple? numpy.where(x == 0)[1] is out of bounds. what is the index array coupled to then?where returns a tuple of ndarrays, each of them corresponding to a dimension of the input. in this case the input is an array, so the output is a 1-tuple. If x was a matrix, it would be a 2-tuple, and so onnumpy.where specifically recommends using numpy.nonzero directly rather than calling where with only one argument.where, as seen in Dusch's answer. As per where's documentation, where(x) is equivalent to asarray(x).nonzero().There is np.argwhere,
import numpy as np
arr = np.array([[1,2,3], [0, 1, 0], [7, 0, 2]])
np.argwhere(arr == 0)
which returns all found indices as rows:
array([[1, 0], # Indices of the first zero
[1, 2], # Indices of the second zero
[2, 1]], # Indices of the third zero
dtype=int64)
Comments
You can search for any scalar condition with:
>>> a = np.asarray([0,1,2,3,4])
>>> a == 0 # or whatver
array([ True, False, False, False, False], dtype=bool)
Which will give back the array as an boolean mask of the condition.
2 Comments
a[a==0] = epsilonYou can also use nonzero() by using it on a boolean mask of the condition, because False is also a kind of zero.
>>> x = numpy.array([1,0,2,0,3,0,4,5,6,7,8])
>>> x==0
array([False, True, False, True, False, True, False, False, False, False, False], dtype=bool)
>>> numpy.nonzero(x==0)[0]
array([1, 3, 5])
It's doing exactly the same as mtrw's way, but it is more related to the question ;)
1 Comment
nonzero method to check conditions.If you are working with a one-dimensional array there is a syntactic sugar:
>>> x = numpy.array([1,0,2,0,3,0,4,5,6,7,8])
>>> numpy.flatnonzero(x == 0)
array([1, 3, 5])
2 Comments
numpy.flatnonzero(numpy.logical_or(numpy.logical_or(x==0, x==2), x==7))You can use numpy.nonzero to find zero.
>>> import numpy as np
>>> x = np.array([1,0,2,0,3,0,0,4,0,5,0,6]).reshape(4, 3)
>>> np.nonzero(x==0) # this is what you want
(array([0, 1, 1, 2, 2, 3]), array([1, 0, 2, 0, 2, 1]))
>>> np.nonzero(x)
(array([0, 0, 1, 2, 3, 3]), array([0, 2, 1, 1, 0, 2]))
Comments
import numpy as np
arr = np.arange(10000)
arr[8000:8900] = 0
%timeit np.where(arr == 0)[0]
%timeit np.argwhere(arr == 0)
%timeit np.nonzero(arr==0)[0]
%timeit np.flatnonzero(arr==0)
%timeit np.amin(np.extract(arr != 0, arr))
23.4 µs ± 1.5 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
34.5 µs ± 680 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
23.2 µs ± 447 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
27 µs ± 506 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
109 µs ± 669 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Comments
I would do it the following way:
>>> x = np.array([[1,0,0], [0,2,0], [1,1,0]])
>>> x
array([[1, 0, 0],
[0, 2, 0],
[1, 1, 0]])
>>> np.nonzero(x)
(array([0, 1, 2, 2]), array([0, 1, 0, 1]))
# if you want it in coordinates
>>> x[np.nonzero(x)]
array([1, 2, 1, 1])
>>> np.transpose(np.nonzero(x))
array([[0, 0],
[1, 1],
[2, 0],
[2, 1])