I think it's better to use a dict to save your data with to_dict:
df = pd.DataFrame({'A':[1,2,3],
                   'B':[4,5,6],
                   'C':[7,8,9],
                   'D':[1,3,5],
                   'E':[5,3,6],
                   'F':[7,4,3]})
print (df)
   A  B  C  D  E  F
0  1  4  7  1  5  7
1  2  5  8  3  3  4
2  3  6  9  5  6  3
#select some row - e.g. with index 2
print (df.loc[2])
A    3
B    6
C    9
D    5
E    6
F    3
Name: 2, dtype: int64
d = df.loc[2].to_dict()
print (d)
{'E': 6, 'B': 6, 'F': 3, 'A': 3, 'C': 9, 'D': 5}
print (d['A'])
3
If ordering is important use OrderedDict:
from collections import OrderedDict
print (OrderedDict(df.loc[2]))
OrderedDict([('A', 3), ('B', 6), ('C', 9), ('D', 5), ('E', 6), ('F', 3)])
If you need all values in columns use DataFrame.to_dict:
d = df.to_dict(orient='list')
print (d)
{'E': [5, 3, 6], 'B': [4, 5, 6], 'F': [7, 4, 3], 
 'A': [1, 2, 3], 'C': [7, 8, 9], 'D': [1, 3, 5]}
print (d['A'])
[1, 2, 3]
d = df.to_dict(orient='index')
print (d)
{0: {'E': 5, 'B': 4, 'F': 7, 'A': 1, 'C': 7, 'D': 1}, 
1: {'E': 3, 'B': 5, 'F': 4, 'A': 2, 'C': 8, 'D': 3}, 
2: {'E': 6, 'B': 6, 'F': 3, 'A': 3, 'C': 9, 'D': 5}}
#get value in row 2 and column A 
print (d[2]['A'])
3