2

I have a dataframe with the following header:

id, type1, ..., type10, location1, ..., location10

and I want to convert it as follows:

id, type, location 

I managed to do this using embedded for loops but it's very slow:

new_format_columns = ['ID', 'type', 'location'] 
new_format_dataframe = pd.DataFrame(columns=new_format_columns)



print(data.head())
new_index = 0 
for index, row in data.iterrows(): 
        ID = row["ID"]

        for i in range(1,11):
                if row["type"+str(i)] == np.nan:
                        continue
                else:
                        new_row = pd.Series([ID, row["type"+str(i)], row["location"+str(i)]])
                        new_format_dataframe.loc[new_index] = new_row.values
                        new_index += 1

Any suggestions for improvement using native pandas features?

2
  • How large is your dataset ? Commented Oct 4, 2016 at 13:14
  • @MMF few GB for now Commented Oct 4, 2016 at 13:16

1 Answer 1

4

You can use lreshape:

types = [col for col in df.columns if col.startswith('type')]
location = [col for col in df.columns if col.startswith('location')]

print(pd.lreshape(df, {'Type':types, 'Location':location}, dropna=False))

Sample:

import pandas as pd

df = pd.DataFrame({
'type1': {0: 1, 1: 4}, 
'id': {0: 'a', 1: 'a'}, 
'type10': {0: 1, 1: 8},
'location1': {0: 2, 1: 9},
'location10': {0: 5, 1: 7}})

print (df)
  id  location1  location10  type1  type10
0  a          2           5      1       1
1  a          9           7      4       8

types = [col for col in df.columns if col.startswith('type')]
location = [col for col in df.columns if col.startswith('location')]

print(pd.lreshape(df, {'Type':types, 'Location':location}, dropna=False))
  id  Location  Type
0  a         2     1
1  a         9     4
2  a         5     1
3  a         7     8

Another solution with double melt:

print (pd.concat([pd.melt(df, id_vars='id', value_vars=types, value_name='type'),
                  pd.melt(df, value_vars=location, value_name='Location')], axis=1)
         .drop('variable', axis=1))

  id  type  Location
0  a     1         2
1  a     4         9
2  a     1         5
3  a     8         7

EDIT:

lreshape is now undocumented, but is possible in future will by removed (with pd.wide_to_long too).

Possible solution is merging all 3 functions to one - maybe melt, but now it is not implementated. Maybe in some new version of pandas. Then my answer will be updated.

Sign up to request clarification or add additional context in comments.

Comments

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.