I used:
df['ids'] = df['ids'].values.astype(set)
to turn lists into sets, but the output was a list not a set:
>>> x = np.array([[1, 2, 2.5],[12,35,12]])
>>> x.astype(set)
array([[1.0, 2.0, 2.5],
[12.0, 35.0, 12.0]], dtype=object)
Is there an efficient way to turn list into set in Numpy?
EDIT 1:
My input is as big as below:
I have 3,000 records. Each has 30,000 ids: [[1,...,12,13,...,30000], [1,..,43,45,...,30000],...,[...]]
x = np.array([[1, 2, 2.5],[12,35,12]])should take 19 seconds with any method. Care to elaborate?astype(set)does not do what you think. There isn't anumpysetdtype. So it just returns anobjectarray.