Generic case
Approach #1: You can use np.add.at to do such an ID-based adding operation like so -
# First column of output array as the union of first columns of a,b              
out_id = np.union1d(a[:,0],b[:,0])
# Initialize second column of output array
out_count = np.zeros_like(out_id)
# Find indices where the first columns of a,b are placed in out_id
_,a_idx = np.where(a[:,None,0]==out_id)
_,b_idx = np.where(b[:,None,0]==out_id)
    
# Place second column of a into out_id & add in second column of b
out_count[a_idx] = a[:,1]
np.add.at(out_count, b_idx,b[:,1])
# Stack the ID and count arrays into a 2-column format
out = np.column_stack((out_id,out_count))
To find a_idx and b_idx, as probably a faster alternative, np.searchsorted could be used like so -
a_idx = np.searchsorted(out_id, a[:,0], side='left')
b_idx = np.searchsorted(out_id, b[:,0], side='left')
Sample input-output :
In [538]: a
Out[538]: 
array([[1, 2],
       [4, 2],
       [3, 1],
       [5, 5]])
In [539]: b
Out[539]: 
array([[3, 7],
       [1, 1],
       [4, 0],
       [2, 3],
       [6, 2]])
In [540]: out
Out[540]: 
array([[1, 3],
       [2, 3],
       [3, 8],
       [4, 2],
       [5, 5],
       [6, 2]])
Approach #2: You can use np.bincount to do the same ID based adding -
# First column of output array as the union of first columns of a,b  
out_id = np.union1d(a[:,0],b[:,0])
# Get all IDs and counts in a single arrays
id_arr = np.concatenate((a[:,0],b[:,0]))
count_arr = np.concatenate((a[:,1],b[:,1]))
# Get binned summations
summed_vals = np.bincount(id_arr,count_arr)
# Get mask of valid bins
mask = np.in1d(np.arange(np.max(out_id)+1),out_id)
# Mask valid summed bins for final counts array output
out_count = summed_vals[mask]
# Stack the ID and count arrays into a 2-column format
out = np.column_stack((out_id,out_count))
Specific case
If the ID columns in a and b are sorted, it becomes easier, as we can just use masks with np.in1d to index into the output ID array created with np.union like so -
# First column of output array as the union of first columns of a,b  
out_id = np.union1d(a[:,0],b[:,0])
# Masks of first columns of a and b matches in the output ID array
mask1 = np.in1d(out_id,a[:,0])
mask2 = np.in1d(out_id,b[:,0])
# Initialize second column of output array
out_count = np.zeros_like(out_id)
# Place second column of a into out_id & add in second column of b
out_count[mask1] = a[:,1]
np.add.at(out_count, np.where(mask2)[0],b[:,1])
# Stack the ID and count arrays into a 2-column format
out = np.column_stack((out_id,out_count))
Sample run -
In [552]: a
Out[552]: 
array([[1, 2],
       [2, 2],
       [3, 1],
       [4, 5],
       [8, 5]])
In [553]: b
Out[553]: 
array([[2, 2],
       [3, 1],
       [4, 0],
       [5, 3],
       [6, 2],
       [8, 2]])
In [554]: out
Out[554]: 
array([[1, 2],
       [2, 4],
       [3, 2],
       [4, 5],
       [5, 3],
       [6, 2],
       [8, 7]])