I have a problem with aggregating results after filtering them. I think I'm on the right track but I feel like I'm chasing my tail.
Here is how it looks:
PUT /my_index
{
"mappings": {
"reporting": {
"properties": {
"events": {
"type": "nested",
"properties": {
"name": { "type": "string", "index" : "not_analyzed" },
"date": { "type": "date" }
}
}
}
}
}
}
So, my document looks like:
{
"events": [
{ "name": "INSTALL", "date": "2014-11-01" },
{ "name": "UNINSTALL", "date": "2014-11-03" },
{ "name": "INSTALL", "date": "2014-11-04" },
...
]
}
Now, when I index some data, for example:
PUT /my_index/reporting/1
{
"events": [
{
"name": "INSTALL",
"date": "2014-11-01"
},
{
"name": "UNINSTALL",
"date": "2014-11-05"
}
]
}
PUT /my_index/reporting/2
{
"events": [
{
"name": "INSTALL",
"date": "2014-11-01"
},
{
"name": "UNINSTALL",
"date": "2014-11-03"
}
]
}
PUT /my_index/reporting/3
{
"events": [
{
"name": "INSTALL",
"date": "2014-11-01"
},
{
"name": "UNINSTALL",
"date": "2014-11-02"
}
]
}
PUT /my_index/reporting/4
{
"events": [
{
"name": "INSTALL",
"date": "2014-11-01"
},
{
"name": "UNINSTALL",
"date": "2014-11-02"
},
{
"name": "INSTALL",
"date": "2014-11-03"
}
]
}
PUT /my_index/reporting/5
{
"events": [
{
"name": "INSTALL",
"date": "2014-11-01"
},
{
"name": "UNINSTALL",
"date": "2014-11-03"
},
{
"name": "INSTALL",
"date": "2014-11-03"
}
]
}
PUT /my_index/reporting/6
{
"events": [
{
"name": "INSTALL",
"date": "2014-11-03"
},
{
"name": "UNINSTALL",
"date": "2014-11-03"
},
{
"name": "INSTALL",
"date": "2014-11-05"
}
]
}
PUT /my_index/reporting/7
{
"events": [
{
"name": "INSTALL",
"date": "2014-11-02"
},
{
"name": "UNINSTALL",
"date": "2014-11-03"
},
{
"name": "INSTALL",
"date": "2014-11-05"
}
]
}
PUT /my_index/reporting/8
{
"events": [
{
"name": "INSTALL",
"date": "2014-11-01"
}
]
}
I want to get number of those who INSTALLED after (including) 2014-11-02 and didn't uninstall (so, UNINSTALL was before 2014-11-02 or there is no UNINSTALL event), and to group them in date_histogram meaning (to have bucket with "date"->"count" data).
I managed to write filter on this nested data, so I can get that filtered result, but I keep chasing my tail when it comes to that histogram aggregation.
This is where I've stuck.
GET /my_index/reporting/_search
{
"query": {
"filtered": {
"query": {
"match_all": {}
},
"filter": {
"bool": {
"must": [
{
"nested": {
"path": "events",
"filter": {
"bool": {
"must": [
{
"term": {
"name": "INSTALL"
}
},
{
"range": {
"date": {
"gte": "2014-11-02"
}
}
}
]
}
}
}
},
{
"nested": {
"path": "events",
"filter": {
"bool": {
"should": [
{
"bool": {
"must_not": [
{
"term": {
"name": "UNINSTALL"
}
}
]
}
},
{
"bool": {
"must": [
{
"term": {
"name": "UNINSTALL"
}
},
{
"range": {
"date": {
"lt": "2014-11-02"
}
}
}
]
}
}
]
}
}
}
}
]
}
}
}
},
"aggregations": {
"filtered_result": {
"filter": {
"bool": {
"must": [
{
"nested": {
"path": "events",
"filter": {
"bool": {
"must": [
{
"term": {
"name": "INSTALL"
}
},
{
"range": {
"date": {
"gte": "2014-11-02"
}
}
}
]
}
}
}
},
{
"nested": {
"path": "events",
"filter": {
"bool": {
"should": [
{
"bool": {
"must_not": [
{
"term": {
"name": "UNINSTALL"
}
}
]
}
},
{
"bool": {
"must": [
{
"term": {
"name": "UNINSTALL"
}
},
{
"range": {
"date": {
"lt": "2014-11-02"
}
}
}
]
}
}
]
}
}
}
}
]
}
},
"aggs": {
"result": {
"nested": {
"path": "events"
},
"aggs": {
"NAME": {
"terms": {
"field": "events.date",
"format": "yyyy-MM-dd",
"order": {
"_term": "asc"
}
}
}
}
}
}
}
}
}
And my result looks like:
... omitted 4 documents that match filter criteria ...
"aggregations": {
"filtered_result": {
"doc_count": 4, <---- this is ok, I really have 4 docs that match criteria
"result": {
"doc_count": 12, <---- those 4 documents really have 12 events (together)
"NAME": {
"buckets": [
{
"key": 1414800000000,
"key_as_string": "2014-11-01",
"doc_count": 2
},
{
"key": 1414886400000,
"key_as_string": "2014-11-02",
"doc_count": 2
},
{
"key": 1414972800000,
"key_as_string": "2014-11-03",
"doc_count": 6
},
{
"key": 1415145600000,
"key_as_string": "2014-11-05",
"doc_count": 2
}
]
}
}
}
}
And I wanted to get something like:
"buckets": [
{
"key_as_string": "2014-11-02",
"doc_count": 0
},
{
"key_as_string": "2014-11-03",
"doc_count": 2
},
{
"key_as_string": "2014-11-04",
"doc_count": 0
},
{
"key_as_string": "2014-11-05",
"doc_count": 2
}
]
Basically, 4 documents that matched criteria are distributed by dates when that criteria occurred, 2 docs on "2011-11-03" and two docs on "2014-11-05" (4 documents that have event "install" after 2014-11-02 and didn't have uninstall event after that (they are still installed).