Another way to achieve this instead of populating the dataframe df, is to add the multi-index to the original arrays (df_a and df_b), and then concatenate them (see below).
The reason df does not get filled is because pandas does data alignment based on the index. And when assigning df.ix["a"] with another dataframe, it fills the values where the indices match. To illustrate this:
>>> df = pd.DataFrame(randn(3, 2), columns=["x", "y"], index=range(3))
>>> df2 = pd.DataFrame(zeros((1, 2)), columns=["x", "y"], index=range(2,3))
>>> df
x y
0 -0.995116 0.132438
1 -0.023010 -0.211612
2 -0.053206 0.427369
>>> df2
x y
2 0 0
>>> df.ix[:] = df2
>>> df
x y
0 NaN NaN
1 NaN NaN
2 0 0
When assigning a numpy array (or a list, ..), there are no indices to match, so it just fills the dataframe (and also broadcast in this case):
>>> df.ix[:] = df2.values
>>> df
x y
0 0 0
1 0 0
2 0 0
So, in your case, when you try to assign df_a to df.ix['a'], the indices do not match (MultiIndex vs normal index), and nothing gets assigned (or more exact: filled with NaN's). But when you first convert df_a to also have the same MultiIndex, it does work:
>>> df_a = pd.DataFrame(randn(3, 2), columns=["x", "y"], index=range(3))
>>> df_b = pd.DataFrame(randn(3, 2), columns=["x", "y"], index=range(3))
>>>
>>> tuples = list(itertools.product(["a", "b"], range(3)))
>>> df = pd.DataFrame(columns=["x", "y"], index=pd.MultiIndex.from_tuples(tuples))
>>>
>>> df_a.index = pd.MultiIndex.from_tuples([tuple(('a', i)) for i in df_a.index])
>>>
>>> df.ix["a"] = df_a
>>> df
x y
a 0 1.533881 1.276075
1 -0.5143746 -0.3400633
2 -1.071509 1.831282
b 0 NaN NaN
1 NaN NaN
2 NaN NaN
Or as above, when using a numpy array (the .values attribute returns the data as a numpy array), it does also work:
>>> df.ix["b"] = df_b.values
>>> df
x y
a 0 1.533881 1.276075
1 -0.5143746 -0.3400633
2 -1.071509 1.831282
b 0 0.06535034 -0.6276186
1 0.008100781 0.9512881
2 0.08688541 -0.7101486
But I think, another way to achieve this instead of populating the dataframe df, is to add the multi-index to the original arrays, and then concatenating them:
To convert it to a MultiIndex, you can do it like this:
>>> df_a['df'] = 'a'
>>> df_b['df'] = 'b'
>>>
>>> df_a = df_a.set_index('df', append=True)
>>> df_b = df_b.set_index('df', append=True)
or like this:
>>> df_a.index = pd.MultiIndex.from_tuples([tuple(('a', i)) for i in df_a.index])
>>> df_b.index = pd.MultiIndex.from_tuples([tuple(('b', i)) for i in df_b.index])
and then you can concatenate them:
>>> df = pd.concat([df_a, df_b])
>>> df
x y
df
0 a -0.225156 -0.846229
1 a 1.566139 0.892763
2 a -1.291920 -0.517408
0 b 1.464853 0.792709
1 b -1.307375 -0.360373
2 b 0.467406 1.249325
>>>
>>> df.swaplevel(0,1)
x y
df
a 0 -0.225156 -0.846229
1 1.566139 0.892763
2 -1.291920 -0.517408
b 0 1.464853 0.792709
1 -1.307375 -0.360373
2 0.467406 1.249325