I tried to complete this exercise but i stopped... Defining a $ \lambda $-term M such that: $$(<M,u>)<M,v> \: \simeq_{\beta} \: <M,u>$$
I chose $M=\lambda m \lambda a \lambda b \lambda p \,((p)m)b \:$ then i have to find a representation T of a function using M that value true if the sequence is empty and false if it's not. A sequence is defined as: $$[]=\lambda x_0\lambda x_1 \lambda z z \\ [b]=\lambda x_0 \lambda x_1 \lambda z (z) x_b\\ [b_1 b_2]=\lambda x_0 \lambda x_1 \lambda z ((z)x_{b_1})x_{b_2} \\ .\\. \\ . \\ [b_1 .. b_n]= \lambda x_0 \lambda x_1 \lambda z (...((z) x_{b_1})x_{b_2}...)x_{b_n} $$ so the sequence of exercise is : $$[01101]= \lambda x_0 \lambda x_1 \lambda z (((((z)x_0)x_1)x_1)x_0)x_1 $$ For example T need to be: $(T)[01101] \simeq_{\beta}$ false while $ (T) []\simeq_{\beta}$ true. I really find that difficult. How i can do that?
edit.
$true=λxλyx$ and $false=λxλyy$