
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy ptp() Function
The NumPy ptp() function computes the range (peak-to-peak) of an array, which is defined as the difference between the maximum and minimum values. This function is particularly useful for understanding the spread of data in an array.
If all values in the array or along the specified axis are NaN, a RuntimeWarning is raised and the result will be NaN. Similarly, if the array contains positive or negative infinity values (inf or -inf), the function will still calculate the range considering infinities as part of the range calculation.
The ptp() function returns a float data type when any element in the input array is a float, even if all values are integers. This ensures compatibility with arrays that may contain NaN, infinities, or fractional numbers. If the input array contains only integers and no NaN values, the return type matches the input's data type.
Following is the syntax of the NumPy ptp() function −
numpy.ptp(a, axis=None, out=None, keepdims=False)
Parameters
Following are the parameters of the NumPy ptp() function −
- a: Input array. The array can be of any shape or data type and may include NaN values.
- axis (optional): Axis along which to compute the range. If None, the range is computed over the flattened array.
- out (optional): Alternate output array to place the result. It must have the same shape as the expected output.
- keepdims (optional): If True, the reduced dimensions are retained as dimensions of size one in the output. Default is False.
Return Values
This function returns a scalar value or a NumPy array containing the range (peak-to-peak) values along the specified axis.
Example
Following is a basic example of finding the range (peak-to-peak) value in an array using the NumPy ptp() function −
import numpy as np # input array with NaN values array = np.array([3, 1, 7, 9, 24, 79]) # finding the peak-to-peak value, ignoring NaN range_value = np.ptp(array) print("Peak-to-Peak Value :", range_value)
Output
Following is the output of the above code −
Peak-to-Peak Value : 78
Example: Range Along an Axis
The ptp() function can find the range values along a specified axis of a multi-dimensional array. In the following example, we have computed the range values along rows and columns −
import numpy as np # 2D input array with NaN values array = np.array([[3, 7, 19], [8, 4, 2], [6, 45, 9]]) # range along rows (axis=1) range_along_rows = np.ptp(array, axis=1) print("Range along rows:", range_along_rows) # range along columns (axis=0) range_along_columns = np.ptp(array, axis=0) print("Range along columns:", range_along_columns)
Output
Following is the output of the above code −
Range along rows: [16 6 39] Range along columns: [ 5 41 17]
Example: Range with 'keepdims' Parameter
The keepdims parameter retains the reduced dimension as a size-one dimension in the output. This means that when we pass a multi-dimensional array and set this parameter to True, the reduced dimension's size is kept as 1, preserving the original dimensionality of the array. In the following example, we have demonstrated its use −
import numpy as np # 2D input array array = np.array([[3, 7, 5], [8, 4, 16], [6, 1, 9]]) # range along columns with keepdims=True range_with_keepdims = np.ptp(array, axis=0, keepdims=True) print("Range with keepdims:\n", range_with_keepdims)
Output
Following is the output of the above code −
Range with keepdims: [[ 5 6 11]]
Example: Graphical Representation of 'ptp()'
In the following example, we have visualized the range values along rows and columns of a 2D array with NaN values. To achieve this, we need to import the numpy and matplotlib.pyplot modules −
import numpy as np import matplotlib.pyplot as plt # 2D input array array = np.array([[3, 7, 5], [8, 4, 2], [6, 1, 9]]) # range along rows range_rows = np.ptp(array, axis=1) # range along columns range_columns = np.ptp(array, axis=0) plt.plot(range(len(range_rows)), range_rows, label="Range along rows (ignoring NaN)") plt.plot(range(len(range_columns)), range_columns, label="Range along columns (ignoring NaN)") plt.title("Visualization of ptp() Results") plt.xlabel("Index") plt.ylabel("Range Value") plt.legend() plt.grid() plt.show()
Output
The plot visualizes the range values along rows and columns of the array −
