
- C++ Library - Home
- C++ Library - <fstream>
- C++ Library - <iomanip>
- C++ Library - <ios>
- C++ Library - <iosfwd>
- C++ Library - <iostream>
- C++ Library - <istream>
- C++ Library - <ostream>
- C++ Library - <sstream>
- C++ Library - <streambuf>
- C++ Library - <atomic>
- C++ Library - <complex>
- C++ Library - <exception>
- C++ Library - <functional>
- C++ Library - <limits>
- C++ Library - <locale>
- C++ Library - <memory>
- C++ Library - <new>
- C++ Library - <numeric>
- C++ Library - <regex>
- C++ Library - <stdexcept>
- C++ Library - <string>
- C++ Library - <thread>
- C++ Library - <tuple>
- C++ Library - <typeinfo>
- C++ Library - <utility>
- C++ Library - <valarray>
- The C++ STL Library
- C++ Library - <array>
- C++ Library - <bitset>
- C++ Library - <deque>
- C++ Library - <forward_list>
- C++ Library - <list>
- C++ Library - <map>
- C++ Library - <multimap>
- C++ Library - <queue>
- C++ Library - <priority_queue>
- C++ Library - <set>
- C++ Library - <stack>
- C++ Library - <unordered_map>
- C++ Library - <unordered_set>
- C++ Library - <vector>
- C++ Library - <algorithm>
- C++ Library - <iterator>
- The C++ Advanced Library
- C++ Library - <any>
- C++ Library - <barrier>
- C++ Library - <bit>
- C++ Library - <chrono>
- C++ Library - <cinttypes>
- C++ Library - <clocale>
- C++ Library - <condition_variable>
- C++ Library - <coroutine>
- C++ Library - <cstdlib>
- C++ Library - <cstring>
- C++ Library - <cuchar>
- C++ Library - <charconv>
- C++ Library - <cfenv>
- C++ Library - <cmath>
- C++ Library - <ccomplex>
- C++ Library - <expected>
- C++ Library - <format>
- C++ Library - <future>
- C++ Library - <flat_set>
- C++ Library - <flat_map>
- C++ Library - <filesystem>
- C++ Library - <generator>
- C++ Library - <initializer_list>
- C++ Library - <latch>
- C++ Library - <memory_resource>
- C++ Library - <mutex>
- C++ Library - <mdspan>
- C++ Library - <optional>
- C++ Library - <print>
- C++ Library - <ratio>
- C++ Library - <scoped_allocator>
- C++ Library - <semaphore>
- C++ Library - <source_location>
- C++ Library - <span>
- C++ Library - <spanstream>
- C++ Library - <stacktrace>
- C++ Library - <stop_token>
- C++ Library - <syncstream>
- C++ Library - <system_error>
- C++ Library - <string_view>
- C++ Library - <stdatomic>
- C++ Library - <variant>
- C++ STL Library Cheat Sheet
- C++ STL - Cheat Sheet
- C++ Programming Resources
- C++ Programming Tutorial
- C++ Useful Resources
- C++ Discussion
C++ Unordered_multimap::bucket_size() Function
The C++ std::unordered_multimap::bucket_size() function is used to returns the number of elements presents in the nth bucket. A bucket is a slot in the container's internal hash table to which elements are assigned based on the hash value of their key. It has a range from 0 to bucket_count - 1.
Syntax
Following is the syntax of std::unordered_multimap::bucket_size().
size_type bucket_size(size_type n) const;
Parameters
- n − It indicates the bucket number that should be lower than bucket_count.
Return value
This function returns the total number of elements from current bucket.
Example 1
In the following example, let's see the usage of unordered_multimap::bucket_size() function.
#include <iostream> #include <unordered_map> using namespace std; int main(void) { unordered_multimap<char, int> umm = { {'a', 1}, {'b', 2}, {'c', 3}, {'d', 4}, {'e', 5} }; for (int i = 0; i < umm.bucket_count(); ++i) cout << "Bucket " << i << " contains "<< umm.bucket_size(i) << " elements." << endl; return 0; }
Output
If we run the above code it will generate the following output −
Bucket 0 contains 2 elements. Bucket 1 contains 2 elements. Bucket 2 contains 0 elements. Bucket 3 contains 0 elements. Bucket 4 contains 0 elements. Bucket 5 contains 0 elements. Bucket 6 contains 2 elements.
Example 2
Consider the following example, where we are going to use the bucket_size() function to get the count of elements present in each bucket.
#include <iostream> #include <unordered_map> using namespace std; int main(void) { unordered_multimap<char, int> umm; umm.insert({ {'a', 10}, {'b', 20}, {'a', 10}, {'b', 30}, {'c', 40} }); for (int i = 0; i < umm.bucket_count(); ++i) cout << "Bucket " << i << " contains "<< umm.bucket_size(i) << " elements." << endl; return 0; }
Output
Following is the output of the above code −
Bucket 0 contains 0 elements. Bucket 1 contains 0 elements. Bucket 2 contains 0 elements. Bucket 3 contains 0 elements. Bucket 4 contains 0 elements. Bucket 5 contains 0 elements. Bucket 6 contains 2 elements. Bucket 7 contains 2 elements. Bucket 8 contains 1 elements. Bucket 9 contains 0 elements. Bucket 10 contains 0 elements. Bucket 11 contains 0 elements. Bucket 12 contains 0 elements.
Example 3
Let's look at the following example, where we are going to use the bucket_size() function.
#include <iostream> #include <unordered_map> using namespace std; int main(void) { unordered_multimap<char, int> umm; umm.insert({ {'a', 10}, {'b', 20}, {'a', 10}, {'b', 30}, {'c', 40} }); for (int i = 0; i < umm.bucket_count(); ++i){ if(i%2!=0){ cout << "Bucket " << i << " contains "<< umm.bucket_size(i) << " elements." << endl; } } return 0; }
Output
Output of the above code is as follows −
Bucket 1 contains 0 elements. Bucket 3 contains 0 elements. Bucket 5 contains 0 elements. Bucket 7 contains 2 elements. Bucket 9 contains 0 elements. Bucket 11 contains 0 elements.