numpy.isin() method - Python
Last Updated :
27 Sep, 2025
The numpy.isin() method provides a way to check whether elements of one NumPy array exist in another array and returns a boolean array indicating which elements are present.
An example to see if a single element exists in a NumPy array.
Python
import numpy as np
arr = np.array([5, 10, 15, 20])
res = np.isin(10, arr)
print(res)
Explanation: The element 10 is present in the array [5, 10, 15, 20], so the output is True.
Syntax
numpy.isin(element, test_elements, assume_unique=False, invert=False)
Parameters:
- element: Input array whose values are checked.
- test_elements: values to check against (can be a list, array, or set).
- assume_unique: If True, function assumes both arrays contain unique elements (for faster computation). Default is False.
- invert: If True, returns True for elements not in test_elements. Default is False.
Return Value: A boolean array of same shape as element, indicating True where element is in test_elements.
Examples
Example 1: Here we check which elements of a 1-D array exist in a given list.
Python
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
li = [1, 3, 5]
res = np.isin(arr, li)
print(res)
Output[ True False True False True]
Explanation:
- Element 1 -> present -> True
- Element 2 -> not present -> False
- Element 3 -> present -> True
- Element 4 -> not present -> False
- Element 5 -> present -> True
Example 2: This example checks which elements of a 2-D array are present in a list of values.
Python
import numpy as np
arr = np.array([[1, 3], [5, 7], [9, 11]])
li = [1, 3, 11, 9]
res = np.isin(arr, li)
print(res)
Output[[ True True]
[False False]
[ True True]]
Explanation:
- Row 0 -> [1, 3] -> both in list -> [True, True]
- Row 1 -> [5, 7] -> neither in list -> [False, False]
- Row 2 -> [9, 11] -> both in list -> [True, True]
Example 3: We can also find elements not present in the reference list using invert=True.
Python
import numpy as np
arr = np.array([10, 20, 30, 40])
li = [20, 40, 50]
res = np.isin(arr, li, invert=True)
print(res)
Output[ True False True False]
Explanation:
- Element 10 -> not in li -> True
- Element 20 -> in li -> False
- Element 30 -> not in li -> True
- Element 40 -> in li -> False
Explore
Python Fundamentals
Python Data Structures
Advanced Python
Data Science with Python
Web Development with Python
Python Practice
My Profile