In examinations, questions from Multivariable calculus are frequently asked in the form of evaluating double and triple integrals, changing the order of integration, as well as problems based on change of variables.
Short Question on Multivariable Calculus - 1
Question 1: Evaluate I = \int_{2}^{3} \int_{-1}^{4} \int_{0}^{1} \left( 4x^2 y - z^3 \right) \, dz \, dy \, dx
Question 2: Evaluate\iiint_{0 \leq x,y,z \leq 1} (x^2+y^2+z^2)\, dx \ dy \ dz.
Question 3: Find the volume of the solid obtained by rotating the region bounded by y =\sqrt{x}, y = 0, and x = 4 about the x-axis.
Question 4: Find the Jacobian of the transformation x = rcosθ, y = rsinθ.
Question 5: Find the volume bounded by the paraboloid z = x2+y2 and the plane z = 9.
Question 6: Change the order of integration:\int_0^2 \int_0^{\sqrt{4-y^2}} (x^2+y^2)\, dx \ dy
Question 7: Find the volume of the sphere x2+y2+z2 ≤ a2 using spherical coordinates.
Question 8: Find the volume of the solid obtained by revolving the region bounded by y = x and y = x2 about the x-axis, over [0, 1].
Question 9: Find the average value of f(x) = x3 on [0, 2].
Question 10: A particle moves with velocity v(t) = 10 + 2t m/s for 0 ≤ t ≤ 50. Find displacement.
Long Questions on Multivariate Calculus - 1
Question 11: Find the volume of the solid bounded by the cylinder x2 + y2 = 4x2 + y2, the planes z = 0 and z = 5, using triple integration in cylindrical coordinates.
Question 12: Find the volume of the solid bounded by the cylinder x2+ y2 = 1 and planes z = 0, z = h.
Check if you were right - full answer with solution below.
Solution 1:
I = \int_{2}^{3} \int_{-1}^{4} \int_{0}^{1} \left( 4x^2 y - z^3 \right) \, dz \, dy \, dx
Integrate w.r.t z:
\int_{0}^{1} \left( 4x^2 y - z^3 \right) \, dz = 4x^2 y \cdot \Big[ z \Big]_0^1 - \Big[ \frac{z^4}{4} \Big]_0^1= 4x^2 y - \frac{1}{4}
Integrate w.r.t y:
\int_{-1}^{4} \left( 4x^2 y - \frac{1}{4} \right) \, dy
= \left[ 2 x^2 y^2 - \frac{1}{4}y \right]_{-1}^{4}
= 2x2( 16 - 1) - 5/4
= 30x2 - 5/4
Integrate w.r.t x:
\int_{2}^{3} \left( 30x^2 - \frac{5}{4} \right) \, dx
= \left[ 10x^3 - \frac{5}{4}x \right]_{2}^{3}
= (270 - 15/4) - 80 - 10/4) = 190 - 5/4 = 755/4
Solution 2:
\iiint_{0 \leq x,y,z \leq 1} (x^2+y^2+z^2)\, dxdydz
Separate the integral:
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} (x^2 + y^2 + z^2) \, dz \, dy \, dx= \int_{0}^{1} \int_{0}^{1} \left( \int_{0}^{1} x^2 \, dz + \int_{0}^{1} y^2 \, dz + \int_{0}^{1} z^2 \, dz \right) \, dy \, dx
- \int_0^1 x^2 dz = x2
- \int_0^1 y^2 dz = y2
- \int_0^1 z^2 dz = 1/3
So integral reduces to:
\int_{0}^{1} \int_{0}^{1} \left( x^2 + y^2 + \frac{1}{3} \right) \, dy \, dx
= \int_{0}^{1} \left( x^2 + \frac{1}{3} + \int_{0}^{1} y^2 \, dy \right) \, dx
= \int_{0}^{1} \left( x^2 + \frac{1}{3} + \frac{1}{3} \right) \, dx
= \int_{0}^{1} \left( x^2 + \frac{2}{3} \right) \, dx
\int_{0}^{1} x^2 \, dx + \int_{0}^{1} \frac{2}{3} \, dx= \frac{1}{3} + \frac{2}{3} = 1
Solution 3:
Washer method formula:
V = \pi \int_{0}^{4} \left[ x^2 - 0^2 \right] \, dx = \pi \int_{0}^{4} x^2 \, dx
Solve integral:
V = \pi \int_{0}^{4} x \, dx
= pi \left[ \frac{x^2}{2} \right]_0^4
= 16/2 = 8
V = π⋅8 = 8π
V = 8π
Solution 4:
Jacobian formula:
J = \frac{\partial (r, \theta)}{\partial (x, y)}=\begin{vmatrix}\frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\\frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y}\end{vmatrix}
Compute partial derivatives:
\frac{\partial r}{\partial x} = \cos \theta, \quad\frac{\partial \theta}{\partial x} = -r \sin \theta, \quad\frac{\partial r}{\partial y} = \sin \theta, \quad\frac{\partial \theta}{\partial y} = r \cos \theta
\begin{vmatrix}\cos \theta & \sin \theta \\- r \sin \theta & r \cos \theta\end{vmatrix} = r( cos2θ+sin2θ) = r
Solution 5:
Convert to polar coordinates:
x = rcosθ, y = rsinθ, z = r2 → 9
- Limits: 0 ≤ r ≤ 3, 0 ≤ θ ≤ 2π , z = r2 → 9
Volume formula:
V = \int_{0}^{2\pi} \int_{0}^{3} \int_{r^2}^{9} dz \, r \, dr \, d\theta = \int_{0}^{2\pi} \int_{0}^{3} (9 - r^2) \, r \, dr \, d\theta
\int_{0}^{3} (9r - r^3) \, dr
= \left[ \tfrac{9}{2}r^2 - \tfrac{1}{4}r^4 \right]_{0}^{3}
= 81/2 - 81/4 = 81/4
V = \int_{0}^{2\pi} \frac{81}{4} \, d\theta = \frac{81}{4} \cdot (2\pi)= \frac{81}{2} \pi.
Solution 6:
Identify region
- Inner limit: 0 ≤ x ≤\sqrt{ 4−y2}
- Outer limit: 0 ≤ y ≤ 2
- This represents quarter-circle x2 + y2 ≤ 4 in the first quadrant.
Reverse the limits
- For fixed x: y goes from 0 to \sqrt{ 4−y^2}
- For x: range is 0 ≤ x ≤ 2.
I = \int_{0}^{2} \int_{0}^{4 - x^2} \left( x^2 + y^2 \right) \, dy \, dx
Solution 7:
In spherical coordinates
x = ρsinϕcosθ, y = ρsinϕsinθ, z = ρcosϕ
Jacobian: dV = ρ2sinϕ dρ dϕ dθdV = ρ2sinϕdρdϕdθ.
Limits
0 ≤ ρ ≤ a, 0 ≤ ϕ ≤ π, 0≤ θ ≤ 2π
Integral
V = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{a} \rho^{2} \sin\phi \, d\rho \, d\phi \, d\theta
Solve
\int_{0}^{a} \rho^{2} \, d\rho = \frac{a^{3}}{3},
\int_{0}^{\pi} \sin\phi \, d\phi = 2,
\int_{0}^{2\pi} d\theta = 2\pi
V = a3/3 . 2 . 2π = 4/3πa3
Solution 8:
V = \pi \int_{a}^{b} \left( y_{\text{upper}}^2 - y_{\text{lower}}^2 \right) \, dx
V = \pi \int_{0}^{1} \left( x^2 - (x^2)^2 \right) dx
= \pi \int_{0}^{1} \left( x^2 - x^4 \right) dx
Integrate:
1/3 - 1/5 = 2/15
V = π . 2/15 = 2/15 π
Solution 9:
f_{\text{avg}} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx
f_{\text{avg}} = \frac{1}{2-0} \int_{0}^{2} x^3 \, dx
= \frac{1}{2} \left[ \frac{x^4}{4} \right]_{0}^{2}
= 1/2 . 4 = 2
Solution 10:
Displacement:
s = \int_{0}^{50} v(t) \, dt
= \int_{0}^{50} ( 10 + 2t) dt
= \int_{0}^{50} 10 \, dt + \int_{0}^{50} 2t \, dt
= 10 . 50 + 2. 502/2 = 500 + 2500 = 3000
Solution 11:
Convert cylinder equation:
x2 + y2 = 4x2 + y
0 = 3x2
x = 0
Cylindrical coordinates:
x = rcosθ, y = rsinθ, z = z
- r limits: 0 to some radius R
- θ : 0 → 2π
- z : 0 → 5
Volume integral:
V = \int_{0}^{2\pi} \int_{0}^{R} \int_{0}^{5} r \, dz \, dr \, d\theta
Solve:
Integrate w.r.t z: \int_0^5 dz = 5
V = \int_{0}^{2\pi} \int_{0}^{R} 5r \, dr \, d\theta
Integrate w.r.t r: \int_0^{R} 5rdr = 5R2/2
Integrate w.r.t θ: \int_0^{2\pi} d\theta = 2\pi
V = 5R2/2 . 2π = 5πR2
V = 5πR2
Solution 12:
Use cylindrical coordinates:
x = rcosθ, y = rsinθ, z = z
- Cylinder: x2 + y2 = r2 = 1 ⟹ r ∈ [0,1]
- Angle: θ ∈ [0, 2π]
- Height: z ∈ [0, h]
Volume element: dV = r dr dθ dz
Set up the integral
\int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{h} r \, dz \, dr \, d\theta
Integrate with respect to z:
\int_{0}^{h} dz = h
V = \int_{0}^{2\pi} \int_{0}^{1} h r \, dr \, d\theta = h \int_{0}^{2\pi} \int_{0}^{1} r \, dr \, d\theta
Integrate with respect to r:
\int_{0}^{1} r \, dr = \frac{r^2}{2} \Big|_0^1 = \frac{1}{2}
V = h \int_{0}^{2\pi} \frac{1}{2} \, d\theta = \frac{h}{2} \int_{0}^{2\pi} d\theta
Integrate with respect to θ:
\int_{0}^{2\pi} d\theta = 2\pi
V = \frac{h}{2} \cdot 2\pi = \pi h
Explore
Maths
4 min read
Basic Arithmetic
Algebra
Geometry
Trigonometry & Vector Algebra
Calculus
Probability and Statistics
Practice