The Wayback Machine - https://web.archive.org/web/20211029142618/https://github.com/TheAlgorithms/Python/commit/b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Skip to content
Permalink
Browse files
Wavelet tree (#4267)
* Added the matrix_exponentiation.py file in maths directory

* Implemented the requested changes

* Update matrix_exponentiation.py

* resolve merge conflict with upstream branch

* add new line at end of file

* add wavelet_tree

* fix isort issue

* updating DIRECTORY.md

* fix variable names in wavelet_tree and correct typo

* Add type hints and variable renaming

* Update data_structures/binary_tree/wavelet_tree.py

Add doctests to placate the algorithm-bot, thanks to @cclauss.

Co-authored-by: Christian Clauss <[email protected]>

* Move doctest to individual functions and reformat code

* Move common test array to the global scope and reuse in tests

* MMove test array to global scope and minor linting changes

* Correct the failing pytest tests

* MUse built-in list for type annotation

* Update wavelet_tree.py

* types-requests

* updating DIRECTORY.md

* Update wavelet_tree.py

* # type: ignore

* # type: ignore

* Update decrypt_caesar_with_chi_squared.py

* ,

* Update decrypt_caesar_with_chi_squared.py

Co-authored-by: Christian Clauss <[email protected]>
Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: Aniruddha Bhattacharjee <[email protected]>
  • Loading branch information
4 people committed Jun 8, 2021
1 parent f37d415 commit b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Showing with 214 additions and 4 deletions.
  1. +2 −0 DIRECTORY.md
  2. +4 −3 ciphers/decrypt_caesar_with_chi_squared.py
  3. +206 −0 data_structures/binary_tree/wavelet_tree.py
  4. +1 −0 requirements.txt
  5. +1 −1 scripts/validate_solutions.py
@@ -136,6 +136,7 @@
* [Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree.py)
* [Segment Tree Other](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree_other.py)
* [Treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/treap.py)
* [Wavelet Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/wavelet_tree.py)
* Disjoint Set
* [Alternate Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/alternate_disjoint_set.py)
* [Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/disjoint_set.py)
@@ -232,6 +233,7 @@
## Dynamic Programming
* [Abbreviation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/abbreviation.py)
* [Bitmask](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/bitmask.py)
* [Catalan Numbers](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/catalan_numbers.py)
* [Climbing Stairs](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/climbing_stairs.py)
* [Edit Distance](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/edit_distance.py)
* [Factorial](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/factorial.py)
@@ -222,9 +222,10 @@ def decrypt_caesar_with_chi_squared(

# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
most_likely_cipher: int = min(
chi_squared_statistic_values, key=chi_squared_statistic_values.get
) # type: ignore # First argument to `min` is not optional
most_likely_cipher: int = min( # type: ignore
chi_squared_statistic_values, # type: ignore
key=chi_squared_statistic_values.get, # type: ignore
) # type: ignore

# Get all the data from the most likely cipher (key, decoded message)
(
@@ -0,0 +1,206 @@
"""
Wavelet tree is a data-structure designed to efficiently answer various range queries
for arrays. Wavelets trees are different from other binary trees in the sense that
the nodes are split based on the actual values of the elements and not on indices,
such as the with segment trees or fenwick trees. You can read more about them here:
1. https://users.dcc.uchile.cl/~jperez/papers/ioiconf16.pdf
2. https://www.youtube.com/watch?v=4aSv9PcecDw&t=811s
3. https://www.youtube.com/watch?v=CybAgVF-MMc&t=1178s
"""

from typing import Optional

test_array = [2, 1, 4, 5, 6, 0, 8, 9, 1, 2, 0, 6, 4, 2, 0, 6, 5, 3, 2, 7]


class Node:
def __init__(self, length: int) -> None:
self.minn: int = -1
self.maxx: int = -1
self.map_left: list[int] = [-1] * length
self.left: Optional[Node] = None
self.right: Optional[Node] = None

def __repr__(self) -> str:
"""
>>> node = Node(length=27)
>>> repr(node)
'min_value: -1, max_value: -1'
>>> repr(node) == str(node)
True
"""
return f"min_value: {self.minn}, max_value: {self.maxx}"


def build_tree(arr: list[int]) -> Node:
"""
Builds the tree for arr and returns the root
of the constructed tree
>>> build_tree(test_array)
min_value: 0, max_value: 9
"""
root = Node(len(arr))
root.minn, root.maxx = min(arr), max(arr)
# Leaf node case where the node contains only one unique value
if root.minn == root.maxx:
return root
"""
Take the mean of min and max element of arr as the pivot and
partition arr into left_arr and right_arr with all elements <= pivot in the
left_arr and the rest in right_arr, maintaining the order of the elements,
then recursively build trees for left_arr and right_arr
"""
pivot = (root.minn + root.maxx) // 2
left_arr, right_arr = [], []
for index, num in enumerate(arr):
if num <= pivot:
left_arr.append(num)
else:
right_arr.append(num)
root.map_left[index] = len(left_arr)
root.left = build_tree(left_arr)
root.right = build_tree(right_arr)
return root


def rank_till_index(node: Node, num: int, index: int) -> int:
"""
Returns the number of occurrences of num in interval [0, index] in the list
>>> root = build_tree(test_array)
>>> rank_till_index(root, 6, 6)
1
>>> rank_till_index(root, 2, 0)
1
>>> rank_till_index(root, 1, 10)
2
>>> rank_till_index(root, 17, 7)
0
>>> rank_till_index(root, 0, 9)
1
"""
if index < 0:
return 0
# Leaf node cases
if node.minn == node.maxx:
return index + 1 if node.minn == num else 0
pivot = (node.minn + node.maxx) // 2
if num <= pivot:
# go the left subtree and map index to the left subtree
return rank_till_index(node.left, num, node.map_left[index] - 1)
else:
# go to the right subtree and map index to the right subtree
return rank_till_index(node.right, num, index - node.map_left[index])


def rank(node: Node, num: int, start: int, end: int) -> int:
"""
Returns the number of occurrences of num in interval [start, end] in the list
>>> root = build_tree(test_array)
>>> rank(root, 6, 3, 13)
2
>>> rank(root, 2, 0, 19)
4
>>> rank(root, 9, 2 ,2)
0
>>> rank(root, 0, 5, 10)
2
"""
if start > end:
return 0
rank_till_end = rank_till_index(node, num, end)
rank_before_start = rank_till_index(node, num, start - 1)
return rank_till_end - rank_before_start


def quantile(node: Node, index: int, start: int, end: int) -> int:
"""
Returns the index'th smallest element in interval [start, end] in the list
index is 0-indexed
>>> root = build_tree(test_array)
>>> quantile(root, 2, 2, 5)
5
>>> quantile(root, 5, 2, 13)
4
>>> quantile(root, 0, 6, 6)
8
>>> quantile(root, 4, 2, 5)
-1
"""
if index > (end - start) or start > end:
return -1
# Leaf node case
if node.minn == node.maxx:
return node.minn
# Number of elements in the left subtree in interval [start, end]
num_elements_in_left_tree = node.map_left[end] - (
node.map_left[start - 1] if start else 0
)
if num_elements_in_left_tree > index:
return quantile(
node.left,
index,
(node.map_left[start - 1] if start else 0),
node.map_left[end] - 1,
)
else:
return quantile(
node.right,
index - num_elements_in_left_tree,
start - (node.map_left[start - 1] if start else 0),
end - node.map_left[end],
)


def range_counting(
node: Node, start: int, end: int, start_num: int, end_num: int
) -> int:
"""
Returns the number of elememts in range [start_num, end_num]
in interval [start, end] in the list
>>> root = build_tree(test_array)
>>> range_counting(root, 1, 10, 3, 7)
3
>>> range_counting(root, 2, 2, 1, 4)
1
>>> range_counting(root, 0, 19, 0, 100)
20
>>> range_counting(root, 1, 0, 1, 100)
0
>>> range_counting(root, 0, 17, 100, 1)
0
"""
if (
start > end
or start_num > end_num
or node.minn > end_num
or node.maxx < start_num
):
return 0
if start_num <= node.minn and node.maxx <= end_num:
return end - start + 1
left = range_counting(
node.left,
(node.map_left[start - 1] if start else 0),
node.map_left[end] - 1,
start_num,
end_num,
)
right = range_counting(
node.right,
start - (node.map_left[start - 1] if start else 0),
end - node.map_left[end],
start_num,
end_num,
)
return left + right


if __name__ == "__main__":
import doctest

doctest.testmod()
@@ -14,4 +14,5 @@ sklearn
statsmodels
sympy
tensorflow
types-requests
xgboost
@@ -21,7 +21,7 @@
def convert_path_to_module(file_path: pathlib.Path) -> ModuleType:
"""Converts a file path to a Python module"""
spec = importlib.util.spec_from_file_location(file_path.name, str(file_path))
module = importlib.util.module_from_spec(spec)
module = importlib.util.module_from_spec(spec) # type: ignore
spec.loader.exec_module(module) # type: ignore
return module

0 comments on commit b743e44

Please sign in to comment.