Neural Network
Artificial neural networks (ANN) are computational systems that "learn" to perform tasks by considering examples, generally without being programmed with any task-specific rules.
Here are 13,812 public repositories matching this topic...
Followup to pytorch/pytorch#74955 (comment).
It turns out that that cmake version was just bad and we can now unpin cmake once again.
cc @seemethere @malfet @pytorch/pytorch-dev-infra
-
Updated
Feb 10, 2022 - JavaScript
-
Updated
May 11, 2022 - C
-
Updated
May 8, 2022
-
Updated
May 15, 2022 - JavaScript
-
Updated
May 16, 2022 - C++
-
Updated
Aug 27, 2021 - C++
-
Updated
Mar 25, 2022 - Jupyter Notebook
fitDataset() expects a Dataset that produces elements of a certain shape, with matching batch sizes etc., and throws errors (from standardizeDataIteratorOutput()) when the conditions are not met. These errors should be tested.
-
Updated
May 15, 2022 - C++
In gensim/models/fasttext.py:
model = FastText(
vector_size=m.dim,
vector_size=m.dim,
window=m.ws,
window=m.ws,
epochs=m.epoch,
epochs=m.epoch,
negative=m.neg,
negative=m.neg,
# FIXME: these next 2 lines read in unsupported FB FT modes (loss=3 softmax or loss=4 onevsall,
# or model=3 supervi-
Updated
May 7, 2022 - TypeScript
-
Updated
May 13, 2022 - C++
-
Updated
May 2, 2022
-
Updated
Jul 30, 2021 - Jupyter Notebook
Describe the issue:
During computing Channel Dependencies reshape_break_channel_dependency does following code to ensure that the number of input channels equals the number of output channels:
in_shape = op_node.auxiliary['in_shape']
out_shape = op_node.auxiliary['out_shape']
in_channel = in_shape[1]
out_channel = out_shape[1]
return in_channel != out_channel
This is correct
-
Updated
Jan 16, 2021 - Java
-
Updated
Dec 22, 2020 - Python
-
Updated
Jan 25, 2021 - Python
-
Updated
Jan 15, 2021 - Jupyter Notebook
-
Updated
Oct 22, 2020
-
Updated
Aug 14, 2019 - TypeScript
-
Updated
May 16, 2022 - Python
-
Updated
May 14, 2022 - Jupyter Notebook
-
Updated
May 14, 2022 - Cuda
Check if test_random_gen_accumulative_additive_additive still crashes in pytorch 1.10.1
Originally posted by @edgarriba in kornia/kornia#1611 (comment)
-
Updated
May 13, 2022 - Python
-
Updated
Sep 23, 2020 - Jupyter Notebook
paddle-mobile将开发一个新的版本,为了:
- 支持Paddle Fluid
- 更小的体积
- 更快的速度
- 更广泛地支持各种arm设备和终端平台
因此,paddle-mobile将会进行一次完全的重构,从框架设计到代码开发。在新版本开发完成后,将会删除原有mobile-deep-learning的代码。新版本开发期间,代码将放置在paddle-mobile repo的一个子目录下。对于子目录的命名,目前有3个候选,希望大家投票:
👍 zygote👎 paddle❤️ fluid
有更好的建议,请回复issue。相关issue:#121
另外,待新版本代码开发完成,移除老版本mobile-deep-learning代码后,新版本代码将移出子目录,直接放置在paddle-mobile repo下面。


Current implementation of Go binding can not specify options.
GPUOptions struct is in internal package. And
go generatedoesn't work for protobuf directory. So we can't specify GPUOptions forNewSession.