-
Updated
Apr 27, 2022 - Go
recommender-system
Here are 2,569 public repositories matching this topic...
-
Updated
Mar 31, 2022
-
Updated
Mar 14, 2022 - Python
-
Updated
Feb 9, 2021 - Python
-
Updated
Apr 24, 2022 - Java
-
Updated
Apr 17, 2022 - Python
-
Updated
Jun 13, 2020 - Python
-
Updated
Apr 26, 2022 - Python
-
Updated
Nov 15, 2020 - Python
-
Updated
Feb 27, 2020
-
Updated
Apr 14, 2022
-
Updated
Sep 1, 2021
-
Updated
Apr 12, 2022 - Python
-
Updated
Dec 17, 2019
-
Updated
Jan 25, 2021 - Python
-
Updated
Apr 12, 2020 - Java
-
Updated
Apr 15, 2022 - Jupyter Notebook
-
Updated
Apr 27, 2022 - Jupyter Notebook
作者您好,關於 AttRec 這份模型我有些疑問,就是在預測時會使用到 Next positive item 的 embedding,照理來說預測時是不能夠把真正的 Next positive item 輸入給模型,這樣等於是把正確答案丟給模型,請問真正在預測時,要如何得到 pos_scores 和 neg_scores 呢 ?
以下是程式碼中使用到 pos_embed 時,會讓我產生的疑問:
# combine
pos_scores = self.w * tf.reduce_sum(tf.multiply(short_interest, pos_embed), axis=-1, keepdims=True) \+
(1 - self.w) * tf.reduce_sum(pos_long_intere
Count API
Is your feature request related to a problem? Please describe.
There are cases, when it might be useful to know how much points are there in index, which satisfies some filtering condition.
Currently, we can only estimate a total amount of points.
Describe the solution you'd like
Create an API which returns amount of points (estimated or precise, depending on flag) for a given filter
-
Updated
Apr 22, 2022 - Python
-
Updated
Apr 25, 2022 - Python
Came up in jfkirk/tensorrec#31
It would be nice to have an arg to re-order the batches every epoch while fitting.
- Add
shuffle_batchesarg tofit()andfit_partial()that shuffles the batch order every epoch if True - Add tests for the arg
-
Updated
Dec 6, 2021 - Python
-
Updated
Apr 28, 2022 - Python
-
Updated
Feb 10, 2022 - Python
-
Updated
Apr 21, 2022 - Python
-
Updated
Aug 5, 2020 - Python
-
Updated
Apr 27, 2022 - Python
Improve this page
Add a description, image, and links to the recommender-system topic page so that developers can more easily learn about it.
Add this topic to your repo
To associate your repository with the recommender-system topic, visit your repo's landing page and select "manage topics."


I am finding a product which can replace Elasticsearch.