1. Create a Dataset
Ultralytics HUB datasets are just like YOLOv5
When you upload a dataset to Ultralytics HUB, make sure to place your dataset yaml inside the dataset root directory as in the example shown below, and then zip for upload to https://hub.ultralytics.com/. Your dataset yaml, directory and zip should all share the same name. For example, if your dataset is called 'coco6' as in our example ultralytics/hub/coco6.zip, then you should have a coco6.yaml inside your coco6/ directory, which should zip to create coco6.zip for upload:
zip -r coco6.zip coco6The example coco6.zip dataset in this repository can be downloaded and unzipped to see exactly how to structure your custom dataset.
The dataset yaml is the same standard YOLOv5 yaml format. See the YOLOv5 Train Custom Data tutorial for full details.
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: # dataset root dir (leave empty for HUB)
train: images/train # train images (relative to 'path') 8 images
val: images/val # val images (relative to 'path') 8 images
test: # test images (optional)
# Classes
nc: 80 # number of classes
names: [ 'person', 'bicycle', 'car', ...]After zipping your dataset, sign in to HUB at https://hub.ultralytics.com and click on the Datasets tab. Click 'Upload Dataset' to upload, scan and visualize your new dataset before training new YOLOv5 models on it!
2. Train a Model
Connect to the Ultralytics HUB notebook and signin using your Ultralytics API key to begin training your model.
β Issues
If you are a new Ultralytics HUB user and have questions or comments, you are in the right place! Please click the New Issue button in the Issues tab in this ultralytics/hub repo and let us know what we can do to make your life better

Formed in 2009, the Archive Team (not to be confused with the archive.org Archive-It Team) is a rogue archivist collective dedicated to saving copies of rapidly dying or deleted websites for the sake of history and digital heritage. The group is 100% composed of volunteers and interested parties, and has expanded into a large amount of related projects for saving online and digital history.



